
QUANTIZATION AND 
PRUNING OF 
CONVOLUTIONAL 
NEURAL NETWORKS 
FOR EFFICIENT FPGA 
IMPLEMENTATION OF 
DIGITAL 
MODULATION 
DETECTION 
FIRMWARE



TABLE OF CONTENTS

INTRODUCTION

PRIOR WORK

MOTIVATION

PROPOSED WORK

METHODOLOGY

RESULTS

CONCLUSION/FUTURE WORK

PUBLICATIONS

REFERENCES



INTRODUCTION

BACKGROUND
Automatic Modulation Recognition (AMR) – detects the 
modulation of a radio frequency (RF) signal. Can be 
computationally expensive. 
Older method: Two-stage system (feature extraction and 
classification) using various algorithms.
Newer method: Convolutional Neural Networks (CNNs) –
using convolutional layers and fully connected layers to classify 
signal modulation types with no loss of accuracy.

PROBLEM
CNNs are resource intensive and thus require specialized 
(larger) hardware, which does not fit most RF receiver 
hardware applications.
Schemes to lower resource utilization of models are necessary 
for a realistic implementation of AMR functions using CNNs.



PRIOR WORK
S. KUMAR ET. AL. [1]
Quantization, low-precision math, residual unit scheme and iterative 
pruning.

HAN ET. AL. [2][3][4]
SqueezeNet [2], a modification of AlexNet – shrinks filter sizes, input 
channels, and downsampling. 
Deep Compression [3] – SqueezeNet combined with quantization.
EIE Hardware Accelerator [4] - preferring SRAM over DRAM and using 
ALUs.

P. M. GYSEL [5]
Ristretto – Quantizing parameters and outputs, implemented ReLU and 
Max Pooling layers.

C. ZHANG ET. AL. [6]
CNN implantation on FPGAs.

D. GÓEZ ET. AL. [7]
AMR implementation on one-dimensional CNNs, using quantization on 
different layers. 



MOTIVATION

 Various methodologies can be used to 
reduce model size, combining several methods 
may prove particularly useful.

Other work Usually focuses on One or two 
methodologies, and may control other 
variables for optimal or more noteworthy 
results. 

Goal is to combine these methodologies 
together in an unbiased way, and attempt to 
analyze what works best for performance as 
well as resource utilization while demonstrating 
no loss of accuracy.



PROPOSED WORK (1/2)

COMBINATION OF METHODOLOGIES
1. Bit quantization
2. Pruning
3. ReLU layers
4. Max pooling layers
5. One-dimensional CNNs
6. Smaller model architectures (less overall layer count)
7. Data preprocessing (normalized I and Q values)

BENCHMARKING
Performance of various model architectures, quantization 
rates, and pruning rates while maintaining full accuracy 
(100% when evaluated against ~2,000 unique data input 
sets).



PROPOSED WORK (2/2)
Signal Generation
Generate preprocessed data inputs.

Model Generation
Use these inputs to train models with various 
architectures and quantization rates (including none). 
Implement pruning at various rates (including none) and 
re-train as needed.
Evaluate model performance on a unique, newly-
generated dataset to avoid detecting overfitting. Tweak 
parameters as needed for 100% accuracy on the 
evaluation dataset.

Benchmarking
Estimate hardware resource utilization and attempt to 
measure performance increases.

Workflow for Model Creation and Benchmarking



METHODOLOGY – SIGNAL 
GENERATION (1/2)

Generate normalized I and Q signal values for 
various digital modulation types.



METHODOLOGY – SIGNAL 
GENERATION (2/2)
Datasets are “chunked” into sets of 32, with the assumption 
that the model can see 32 I and Q values of the same 
modulation type before needing to identify the modulation 
type.

Dataset chunks are shuffled, with one label carried per 
chunk.

Chunks are organized to be fed into models for training and 
evaluation.



METHODOLOGY – MODEL 
GENERATION (1/2)
Create 1-D CNNs of various layer counts (convolutional, fully connected, 
ReLU, and max pooling).

Train these models, using a generated training dataset. Tweak learning 
parameters, epoch count, and loss function threshold as needed. Model 
iteratively trains over the dataset to reach desired loss threshold.



METHODOLOGY – MODEL 
GENERATION (2/2)

Prune and retrain if needed.

Evaluate against separately generated dataset, tweaking above 
parameters until 100% accuracy on ~2,300 data “chunks” is 
achieved.

Repeat above process for all model architectures, at various 
quantization rates.

Repeat THIS above process for all model architectures and 
quantization rates, at various pruning rates.



METHODOLOGY – BENCHMARKING

Standard benchmarking in python for throughput, 
latency, etc. is done on the evaluation dataset.

Benchmarking for hardware resource estimation 
is done using a separate hardware estimation 
algorithm – assumptions for DSP blocks, LUTs 
(look-up tables), FFs (flipflops), and BRAM (block 
RAM) utilization is calculated based on non-zero 
weights (for pruning purposes), bit width (for 
quantization purposes), and knowledge of how 
these resources are generally synthesized.



RESULTS – LATENCY (1/2)

Training latency was low for non-quantized models, 
lowering steadily as model architecture was lowered 
(250 to 200 ms) – while quantizing at any amount 
seemed to increase it by a factor of 4-5. 

Smaller models had worse throughput, however 
(16,000 samples/sec for the smallest versus 7,500 
samples/sec for the larger models). 

Quantization greatly raises the latency, and shrinking 
the model lowers it – but quantization has a large impact 
on throughput, much moreso than model architecture. 

Pruning seemed to lower the latency a bit at times, but 
mostly negligible.



RESULTS – LATENCY (2/2)



RESULTS – INFERENCE TIME (1/2)
Inference time (the time it takes a model to make 
predictions on a single batch of inputs) was better 
on smaller models, but raised by a factor of ten 
(e.g. 1ms to 10ms) when quantized by any amount.

Pruning improved the models’ performance 
slightly in all cases.



RESULTS – INFERENCE TIME (2/2)



RESULTS – HARDWARE UTILIZATION (1/2)

Hardware utilization went down predictably with smaller models, 
with quantization providing a massive cut in utilization (factor of 4) 
– pruning providing a smaller but not-insignificant cut as well (20% 
pruning leading to roughly 10% less resource utilization).



RESULTS – HARDWARE UTILIZATION (2/2)



RESULTS –TABULATED (1/3) – 0% PRUNING
BRAMLUTFFDSPInference 

Time (ms)
Throughput 
(smpls/sec)

Model

683827984452349745205760.7526653342515.57589vgglike_5f_5c_4re_4mp
381730832268797726855680.7360484443475.39937vgglike_5f_4c_4re_4mp
371337516249111324889600.7518724542560.41057vgglike_5f_3c_4re_3mp
104527807203617194880.4987271164163.34569vgglike_3f_3c_2re_3mp
103543766710816703360.4592217869683.10614vgglike_3f_2c_2re_2mp

82922965467935461760.6950866746037.42437vgglike_2f_2c_2re_2mp
82676205344415338880.5262555560806.95937vgglike_2f_1c_1re_1mp

149569961130874113014414.08848232271.358926vgglike_5f_5c_4re_4mp_8bit
94327086719946713929.130828913504.610623vgglike_5f_4c_4re_4mp_8bit
93343796227786222408.94098313579.024773vgglike_5f_3c_4re_3mp_8bit
21131951800901798726.696218254778.816763vgglike_3f_3c_2re_3mp_8bit
2885941677701675845.42216625901.700326vgglike_3f_2c_2re_2mp_8bit
2730741366981365445.090511566286.205148vgglike_2f_2c_2re_2mp_8bit
2669051336101334724.197020427624.456587vgglike_2f_1c_1re_1mp_8bit
971774484815584760810.68567372994.663773vgglike_5f_5c_4re_4mp_6bit
63245285039955035448.561234273737.778806vgglike_5f_4c_4re_4mp_6bit
62507824670834666807.276267544397.859183vgglike_5f_3c_4re_3mp_6bit
1848941350671349047.373689314339.754317vgglike_3f_3c_2re_3mp_6bit
1664441258271256885.387334225939.85795vgglike_3f_2c_2re_2mp_6bit
1548041025231024084.915824916509.589044vgglike_2f_2c_2re_2mp_6bit
1501781002071001044.296796887447.408118vgglike_2f_1c_1re_1mp_6bit
64784965654375650729.922369333225.036173vgglike_5f_5c_4re_4mp_4bit
42163523359973356968.958832893571.89384vgglike_5f_4c_4re_4mp_4bit
41671883113893111208.632286213707.013324vgglike_5f_3c_4re_3mp_4bit
15659690045899367.209447564438.620262vgglike_3f_3c_2re_3mp_4bit
14429683885837925.578945775735.850701vgglike_3f_2c_2re_2mp_4bit
13653668349682724.657667986870.390966vgglike_2f_2c_2re_2mp_4bit



RESULTS –TABULATED (2/3) – 20% PRUNING
BRAMLUTFFDSPInference 

Time (ms)
Throughput 
(smpls/sec)

Model

593492195410360141006800.823236938870.94993vgglike_5f_5c_4re_4mp_pr_20
341611759246951124671020.728793843908.16842vgglike_5f_4c_4re_4mp_pr_20
331255670232892723267740.796352440183.21292vgglike_5f_3c_4re_3mp_pr_20

84337536843176834440.520753361449.43866vgglike_3f_3c_2re_3mp_pr_20
72982495588575581120.39444881126.02952vgglike_3f_2c_2re_2mp_pr_20
62399684422634416460.436557873300.72132vgglike_2f_2c_2re_2mp_pr_20
62153944299894294360.372391185931.15993vgglike_2f_1c_1re_1mp_pr_20

12872829102160210208729.25587073457.265253vgglike_5f_5c_4re_4mp_8bit_pr_20
639867461289361229110.0090553197.104973vgglike_5f_4c_4re_4mp_8bit_pr_20
63154385853305847927.79642844104.443491vgglike_5f_3c_4re_3mp_8bit_pr_20
11082611711571709397.254224411.225465vgglike_3f_3c_2re_3mp_8bit_pr_20
1742251390321388465.35830455972.038408vgglike_3f_2c_2re_2mp_8bit_pr_20
1599871105661104124.51867967081.714804vgglike_2f_2c_2re_2mp_8bit_pr_20
1538481074971073593.51297299109.093927vgglike_2f_1c_1re_1mp_8bit_pr_20
75857006895146889679.33856943426.649068vgglike_5f_5c_4re_4mp_6bit_pr_20
63245285039955035449.9363923220.484857vgglike_5f_4c_4re_4mp_6bit_pr_20
42067453797603793578.37578763820.536237vgglike_5f_3c_4re_3mp_6bit_pr_20
1723621123441121816.84515654674.838357vgglike_3f_3c_2re_3mp_6bit_pr_20
1545511020451019065.68542845628.423662vgglike_3f_2c_2re_2mp_6bit_pr_20
14500582925828104.62297566921.948775vgglike_2f_2c_2re_2mp_6bit_pr_20
14038580622805193.56666588971.964801vgglike_2f_1c_1re_1mp_6bit_pr_20
53889264578494574848.91301293590.256219vgglike_5f_5c_4re_4mp_4bit_pr_20
21756842714162711158.48744983770.272669vgglike_5f_4c_4re_4mp_4bit_pr_20
21374432531022528339.61115563329.464365vgglike_5f_3c_4re_3mp_4bit_pr_20
04887375428753198.73647073662.806307vgglike_3f_3c_2re_3mp_4bit_pr_20
03669368680685875.70970095604.496711vgglike_3f_2c_2re_2mp_4bit_pr_20
03000055277552004.53317027059.077542vgglike_2f_2c_2re_2mp_4bit_pr_20



RESULTS –TABULATED (3/3) – 30% PRUNING
BRAMLUTFFDSPInference 

Time (ms)
Throughput 
(smpls/sec)

Model

563372933392426739213460.856598737357.05082vgglike_5f_5c_4re_4mp_pr_30
331554533237111523687060.709917345075.67083vgglike_5f_4c_4re_4mp_pr_30
321230313227675522746020.783129840861.68214vgglike_5f_3c_4re_3mp_pr_30

84279706713116704380.570157356124.85914vgglike_3f_3c_2re_3mp_pr_30
62696755019315011860.416837876768.47387vgglike_3f_2c_2re_2mp_pr_30
52130543888733882560.47248467727.16125vgglike_2f_2c_2re_2mp_pr_30
51887693767393761860.2751253116310.6271vgglike_2f_1c_1re_1mp_pr_30

128459989851789844489.29460493442.857481vgglike_5f_5c_4re_4mp_8bit_pr_30
63924525963905957887.92215524039.304879vgglike_5f_4c_4re_4mp_8bit_pr_30
63058485659355653977.81651914093.893893vgglike_5f_3c_4re_3mp_8bit_pr_30
11064311672241670066.15442495199.511001vgglike_3f_3c_2re_3mp_8bit_pr_30
1673611253081251225.34166855990.637622vgglike_3f_2c_2re_2mp_8bit_pr_30
15330797238970844.81717696642.894936vgglike_2f_2c_2re_2mp_8bit_pr_30
14719294184940466.8966684639.921786vgglike_2f_1c_1re_1mp_8bit_pr_30
75333726191696186229.49723643369.401223vgglike_5f_5c_4re_4mp_6bit_pr_30
42527063809103804598.54345913745.555469vgglike_5f_4c_4re_4mp_6bit_pr_30
41873903420143416117.24014094419.803478vgglike_5f_3c_4re_3mp_6bit_pr_30
1719191100671099046.35497385035.425974vgglike_3f_3c_2re_3mp_6bit_pr_30
14948291904917655.06449076318.503118vgglike_3f_2c_2re_2mp_6bit_pr_30
14000672932728174.12687117754.058481vgglike_2f_2c_2re_2mp_6bit_pr_30
13539470639705366.78594494715.629233vgglike_2f_1c_1re_1mp_6bit_pr_30
43443374041484037839.00099383555.162991vgglike_5f_5c_4re_4mp_4bit_pr_30
21607652429832426828.3204323845.95414vgglike_5f_4c_4re_4mp_4bit_pr_30
21290742352782350098.94620673576.935028vgglike_5f_3c_4re_3mp_4bit_pr_30
04848674266741576.54895644886.274699vgglike_3f_3c_2re_3mp_4bit_pr_30
03260160498604054.63787646899.709485vgglike_3f_2c_2re_2mp_4bit_pr_30
02666648617485404.493467121.460947vgglike_2f_2c_2re_2mp_4bit_pr_30



CONCLUSION/FUTURE WORK
Combining smaller architectures, quantization, pruning, and 
ReLU/Max Pooling layers can be done while maintaining high 
accuracy.

System will want lowest possible inference time – so smallest 
architecture models provide best performance. Reducing number 
of layers is the best technique overall, with pruning providing a 
“free” performance bonus.

Hardware estimation drastically reduced by smaller model sizes, 
with quantization providing a significant extra drop in utilization. 
Quantization needs to be evaluated on a performance basis to 
determine acceptability based on minimum required inference 
time – trading off speed for utilization. Pruning provides a small but 
linear drop in utilization, can be a “free” gain in valuable utilization 
space while maintaining accuracy.

Would like to attempt to get models synthesized onto FINN 
architecture and actual hardware utilization measured, if possible.



PUBLICATIONS

In Preparation
Thesis Paper (submitted)

Under Submission
J. Rothe, H. Shajaiah, “Quantization and Pruning of 
Convolutional Neural Networks for Efficient FPGA 
Implementation of Digital Modulation Detection Firmware” –
ICCCN2024, July 29-31, Hawaii, USA



REFERENCES

[1] S. Kumar, R. Mahapatra and S. Anurag, "Automatic Modulation Recognition: An 
FPGA Implementation," IEEE Communications Letters, vol. 26, no. 9, pp. 2062-2066, 
2022

[2] F. N. Iandola, S. Han, H. M. Moskewicz, K. Ashraf, W. J. Dally and K. Kuetzer, 
"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model 
size," arXiv:1602.07360, 2016.

[3] S. Han, H. Mao and W. Dally, "Deep Compression: Compressing DNNs with 
Pruning, Trained Quantization and Huffman Encoding," in ICLR, 2016.

[4] S. Han, X. Liu, M. Huizi, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, "EIE: 
Efficient Inference Engine on Compressed Deep Neural Network," ACM SIGARCH 
Computer Architecture News, vol. 44, 2016. 

[5] P. M. Gysel, Ristretto: Hardware-Oriented Approximation of Convolutional Neural 
Networks, University of California Davis, 2016.

[6] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, Optimizing FPGA-based 
Accelerator Design for Deep Convolutional Neural Networks, Monterey, California: 
PKU/UCLA Joint Research Institute in Science and Engineering, 2015.

[7] D. Góez, P. Soto, S. Latré, N. Gaviria and M. Camelo, A Methodology to Design 
Quantized Deep Neural Networks for Automatic Modulation Recognition, Basel, 
Switzerland: MDPI, 2022. 


