

QUANTIZATION AND PRUNING OF CONVOLUTIONAL NEURAL NETWORKS

FOR EFFICIENT FPGA IMPLEMENTATION OF DIGITAL MODULATION

DETECTION FIRMWARE

by

Joshua Andrew Rothe

A thesis submitted to Johns Hopkins University in conformity with the requirements for

the degree of Master of Science

Baltimore, Maryland

July 2024

© 2024 Joshua Rothe

All rights reserved

ii

Abstract

Automatic modulation detection is an important function of communications systems.

Commonly found in software defined radios, it enables radio receivers to interpret multiple and

potentially changing modulation types without needing manual input from the user. Due to vastly

increasing performance, many modern systems are moving away from the traditional two-stage

process of feature extraction and classification; instead, a neural-network based system (also

known as deep learning) is being utilized with increased speed and virtually no loss in accuracy.

These implementations, when placed on hardware or on a Field Programmable Gate Array

(FPGA), provide the fastest performance; but until recently the barrier of entry has been the size

of the neural networks and the infeasible amount of resources they would need to occupy on the

FPGA fabric. This thesis explores the effects of both quantization and pruning on convolutional

neural network models of various sizes while maintaining high classification accuracy for the

digitally modulated signals generated. In this thesis, a framework is proposed for the generation

of the signals, models, and hardware estimation to serve as a guide for efficient deep learning

implementations of models intended to fit on hardware with limited resources. The results

demonstrate tradeoffs and design considerations that balance performance and implementation

size for engineers aiming to implement a deep learning-based automatic modulation detection

scheme on FPGAs.

Primary Reader and Advisor: Haya Shajaiah

Secondary Reader: Arnab Das

iii

Contents

Abstract ... ii

List of Figures .. iv

Introduction ... 1

Related Work .. 2

Background ... 5

Automatic Modulation Recognition ... 5

Neural Networks ... 6

Quantization .. 9

Pruning .. 9

Problem Formulation .. 11

Methodology ... 13

Dataset Generation .. 13

Model Creation ... 16

Model Training ... 17

Model Evaluation .. 18

Hardware Utilization Estimation .. 19

Experiments and Results ... 22

Conclusion and Future Work .. 34

References ... 36

Appendix A: Tabulated Model Benchmarks, 0% Pruning ... 39

Appendix B: Tabulated Model Benchmarks, 20% Pruning.. 40

Appendix C: Tabulated Model Benchmarks, 30% Pruning.. 41

Appendix D: Average Training Latency, All Models .. 42

Appendix E: Average Evaluation Throughput, All Models ... 43

Appendix F: Average Inference Time (Evaluation), All Models ... 44

Appendix G: DSP Utilization, All Models ... 45

Appendix H: Flipflop Utilization, All Models .. 46

Appendix I: Look-up Table Utilization, All Models .. 47

Appendix J: Block RAM Utilization, All Models .. 48

iv

List of Figures

Figure 1. Visualization of a VGG-like DeepLearning Neural Network [14] 7

Figure 2. Workflow for Model Creation and Benchmarking. .. 12

Figure 3. Generated I and Q Values for 16QAM.. 14

Figure 4. Data Generation Visualization. ... 16

Figure 5. VGGLike_5f_5c_4re_4mp Average Latency at Various Quantization and Pruning

Rates. ... 23

Figure 6. VGGLike_2f_2c_2re_2mp Average Latency at Various Quantization and Pruning

Rates. ... 23

Figure 7. All Models Compared – Throughput (samples/sec) and Quantization, Sorted by Model

Architecture. Each Layer is a Different Pruning Rate. ... 25

Figure 8. VGGLike_5f_5c_4re_4mp Average Throughput at Various Quantization and Pruning

Rates. ... 26

Figure 9. VGGLike_2f_2c_2re_2mp Average Throughput at Various Quantization and Pruning

Rates. ... 26

Figure 10. All Models Compared – Inference Time During Evaluation (ms) and Quantization,

Sorted By Model Architecture. Each Layer Is a Different Pruning Rate. 28

Figure 11. VGGLike_5f_5c_4re_4mp Inference Time (ms) at Various Quantization and Pruning

Rates. ... 29

Figure 12. VGGLike_2f_2c_2re_2mp Inference Time (ms) at Various Quantization and Pruning

Rates. ... 29

Figure 13. VGGLike_5f_5c_4re_4mp DSP Utilization at Various Quantization and Pruning

Rates. ... 31

Figure 13. VGGLike_5f_5c_4re_4mp DSP Utilization at Various Quantization and Pruning

Rates. ... 31

Figure 15. All Models Compared – Flipflop Utilization and Quantization, Sorted by Model

Architecture... 32

Figure 16. All Models Compared – Look-Up Table Utilization and Quantization, Sorted by

Model Architecture. .. 33

Figure 17. All Models Compared – BRAM Utilization and Quantization, Sorted by Model

Architecture... 33

1

Chapter 1

Introduction

 Signal modulation detection is an essential function of many radio frequency (RF)

communications systems, and fast modulation detection is essential for systems where the signal

being received may have an unknown or varying modulation style. A quick and reliable

modulation detection algorithm enables a system to receive multiple signals quickly, and has

several useful applications in the Electronic Warfare realm where the modulation may not

necessarily be known or freely given prior to signal acquisition. Traditional modulation detection

algorithms have been run on the CPU side and take up both time and processing power – hence

the shift to firmware modulation detection. Offloading this computational responsibility frees up

the CPU for other functions, making an FPGA implementation a solid choice. However, with

considerations for both FPGA utilization as well as SWaP (Size, Weight, and Power) constraints,

better methods are always desirable to improve the communications capability of a system.

Convolutional Neural Networks (CNNs) have been shown to outperform traditional algorithms,

but implementing them on FPGAs with limited resources has been a challenge for firmware

engineers. Recent breakthroughs in this topic have led to various real-world implementations of

CNNs that allow for FPGA implementations that can fit on FPGA firmware in a way that is

realistic for the SWaP specifications for the systems that require it. Various implementation

techniques can be utilized based on the system’s requirements and limitations, to provide the

same functionality that traditional algorithms do. The benefits of these novel implementations

include additional functionality (on resource-limited systems) as well as meeting much faster

timing requirements. [1]

2

In this thesis, various CNN models are created and trained on normalized I and Q values

that would be typically extracted from a digital, modulated radio frequency signal, with noise

added to simulate real-world signal quality. The proposed models consider different numbers of

layers, with a focus on decreased layer count and smaller model architecture. Separate signal

datapoints are generated and used to evaluate the model, while adjusting the training parameters

until model accuracy reaches 100%. Finally, FPGA resource utilization is estimated based on the

size and structure of the model. With these and various other benchmarks, the trade-offs between

network size, quantization, and structured pruning are evaluated.

Related Work

 Several papers have previously explored methods for FPGA implementations of

automatic modulation detection. S. Kumar et al. [1] explores low-precision math and

quantization to solve the model size problem, using a residual unit based scheme and iterative

pruning-based training mechanisms to cut hardware utilization by 40%, achieving 527k

classifications per second with a 7.5 μs latency. They acknowledge that both methods are well-

known to reduce complexity and storage requirements for FPGA implementations of CNNs.

They also reference SqueezeNet, a modification of AlexNet that reduces parameters by 50x and

implementation size by 510x [2]. AlexNet is a CNN model architecture that was noteworthy for

having won the ImageNet Large Scale Visual Recognition Challenge in 2012, drastically

reducing the error percentage for its task by utilizing a model with a very deep layer count – five

convolutional layers, two fully connected hidden layers, and one fully connected output layer;

while also using the ReLU (rectified linear unit) as its activation function.

3

SqueezeNet itself uses several different methods for compressing the model size.

Network pruning, demonstrated on SqueezeNet by Han et al. [3], was combined with

quantization to create what is referred to as Deep Compression, greatly shrinking the model with

no loss of accuracy. In [4], Han et al. later goes on to create the EIE (Efficient Inference Engine)

hardware accelerator, where more hardware-based solutions (such as forsaking DRAM for

SRAM and using ALUs) - but these implementations were still focused on CPUs and GPUs

rather than FPGAs or hardware [5].

The work in [6] on SqueezeNet was done by P. M. Gysel in the development of Ristretto.

Named after a highly concentrated form of espresso, it is a model approximation framework that

can which reduced the bit-width of both network parameters and outputs of resource-intense

layers, as well as the need for multiplication operations and utilization. It does this by using fixed

point arithmetic and representation instead of floating point, as well as fine-tuning the resulting

network. This work was done with a GPU focus, but the implementation of reducing parameter

size, as well as Rectified Linear Unit (ReLu) layers and max pooling layers, are relevant to

reducing FPGA utilization. The paper’s data on accuracy versus model size implied that a larger

model does not necessarily equal a better performing model, which lends optimism to the idea

that a well-performing model can be efficiently placed onto an FPGA with lower resource

utilization.

C. Zhang et al. explores CNN implementation on FPGAs, producing promising results

[7]. One noteworthy conclusion from the paper is that there can be as much as a 90%

performance difference between two solutions of similar FPGA utilization, so finding an optimal

implementation is non-trivial.

4

Finally, D. Góez et al. in [8] explores the specific implementation of quantization on deep

neural networks for automatic modulation recognition on FPGAs. They use a one-dimensional

CNN and quantize the weights individually using the Brevitas library, and then analyze

performance. Their paper states that they would like to evaluate this methodology when also

using different model architectures and potentially pruning. In this thesis, I address both, and

evaluate the trade-offs of both when combined with quantization.

This research expands upon existing techniques mentioned in the previous papers,

including quantization to reduce bit width, structured pruning to reduce the number of

unnecessary weights, ReLU layers, max pooling layers, and reducing the overall size of the CNN

model itself. This study investigates the combined impact of these techniques on performance

while verifying model accuracy is maintained. Furthermore, an FPGA resource utilization

scheme is applied to estimate the resource achieved by implementing the above techniques on

the models.

This thesis begins by providing a background on key concepts such as Automatic

Modulation Recognition (AMR), Neural Networks (NNs), quantization techniques for reducing

bit width, and structured pruning methods for removing redundant weights in neural networks.

This information is followed by the problem statement, which is then discussed at length. Next,

the methodology employed to address this problem is thoroughly described, followed by an

analysis of the experimental setup, and resulting outcomes and analysis. Finally, the conclusions

drawn from the research are presented, along with their potential implications.

5

Chapter 2

Background

Automatic Modulation Recognition

 Automatic Modulation Recognition (AMR) is used on the receiver side of a

communication system to detect the modulation of a signal without prior configuration.

Modulation refers to how a Radio Frequency (RF) signal is transmitting data – a basic RF signal,

called a carrier wave, is combined with a modulating signal that contains the data to be

transmitted in a specific format. There are two main categories of modulation. Analog

modulation, which carries analog data such as sound, includes familiar types such as Amplitude

Modulation (AM) and Frequency Modulation (FM). Digital Modulation, which carries digital

data (1s and 0s), includes modulation types such as Phase-shift keying (PSK) and Quadrature

Amplitude Modulation (QAM). Digital modulation also has an additional parameter of

increasing symbol count, which increases the amount of data that can be sent over the same

period while also making it more prone to degradation due to noise, as adding more symbols to

the same constellation (when limiting your system to the same amount of power regardless of

modulation) will reduce the distance between them [9].

For friendly known signals where the modulation type will generally be given freely,

AMR helps to reduce overhead and thus speed up the communications cycle; for unfriendly or

unknown signals, it is a necessary step before the signal can be demodulated and read [10].

Another application is Electronic Warfare (EW), as the hostile signal must be matched in

modulation before it can be sufficiently jammed.

6

Automatic Modulation Recognition typically has two stages in a traditional system –

feature extraction, and classification. Feature extraction is the method by which the system, such

as a Software Defined Radio (SDR), chooses what features to pull from the signal of interest. At

this stage, the system will also perform necessary signal processing and filtering to make the

features as easy to extract as possible. Classification is the second stage, where the system uses

the previously extracted features to determine what the modulation type of the signal is.

Modern systems are moving away from this two-stage classification system and instead

into a CNN-based system, which does the feature extraction and classification at the same time,

albeit with different layers in the network (convolutional layers for extraction, and fully

connected layers for classification). Letting the neural network select the important features to

extract and classify makes the process both simpler for the designer and more accurate, as the

system is not limited to only the features the designer thinks are important but is instead free to

select its own. Most of these new classification methods revolve around the implementation of

trained Neural Networks (NNs) for this purpose [11].

Neural Networks

 “Neural networks” (NNs) are a concept that has been around for over a century, although

obviously not in its current form. The first neural network was published by Adrien-Marie

Legendre in 1805, although Johann Gauss is also credited with unpublished work on this same

topic around 1795 [12]. Called the method of least squares at the time, now known as linear

regression; its early framework consisted of an input layer, an output layer, and real-valued

weights which continuously adjust based on a set of input vectors. One-dimensional General

Regression Neural Networks (GRNNs) are the clearest example of this, but of course modern

7

GRNNs tend to have multiple dimensions for increased complexity and performance [13]. These

types of neural networks, commonly referred to as Machine Learning (ML), are some of the

simpler forms that are in use today, and the most common tutorial application of these is

prediction of house sale prices based on attributes it is trained on (such as square footage,

number of rooms, location, and so on).

Figure 1. Visualization of a VGG-like DeepLearning Neural Network [14]

Deep Learning (DL), more academically known as Artificial Neural Networks (ANNs),

is a subset of Machine Learning, differentiated by its attempt to mimic biological neural

networks in the way that it trains on the provided data. Nodes communicate with other nodes

(which were previously the iteratively updating weighted values), and the connections between

nodes are weighted based on their successful ability to deliver a correct outcome [15]. Increasing

8

complexity and adding layers can sometimes, but not always, increase the performance of the

neural network. The discovery that Artificial Intelligence (AI) researchers have been making

recently is that bigger is not always better, and some well-tuned models of vastly smaller size

can outperform models that are even orders of magnitude more complex. As a recent example,

Google executives have concluded that open-source chat models are beginning to overtake

corporate AI researchers’ larger, more complex, and proprietary models, the most common

example being OpenAI’s ChatGPT [16]. There are several possible contributing factors to this

phenomenon – one, smaller models can avoid overfitting to unnecessary features; two, the

quality of the dataset and the tools used in the architecture of the model itself can greatly

influence its performance. There is no “one size fits all” brute force model you can simply apply

to everything with infinite computing power, and sometimes clever design can lead to

breakthroughs (as with AlexNet). As data scientist and engineers become more skilled in their

use of neural networks, this naturally progresses to more effective implementation of CNN

models.

 What this means for AMR NNs is that simply, the theoretical networks that were too

large to fit on common hardware are now able to be scaled down without sacrificing

performance. For embedded systems and systems where SWaP is a concern, this allows actual

implementation to occur on hardware where it previously was not feasible. Several articles have

been published just in the last two years which detail various implementations of these

lightweight yet fully functional neural networks [1] [8].

9

Quantization

 Quantization is a very common process in machine learning and neural network

optimization, and the concept itself is not new – for very small or resource-constrained systems,

reducing precision of numbers to free up memory space is a common practice. Quantization

applies this concept to neural networks by reducing precision – on node weights and biases

(parameters) within the network as well as values going into and out of the model. Many modern

systems that synthesize NNs onto CPUs, GPUs, and FPGAs even have some form of

quantization optimizer built in, as the practice has become standard for purpose of both size

reduction as well as increasing performance – smaller numbers can easily lead to faster

computation times, as less bits need to be handled in the operation.

Standard precision for most neural networks is 32-bit, but it is widely accepted that 8-bit

quantization leads to no loss of accuracy – in [4], quantization from the typical value (32-bit) can

drop the model down to ~17% of its original size before accuracy begins to become noticeably

affected, and they start at 8-bit and work their way down to lower and lower precision. Thus, this

thesis starts at 8-bit quantization, works lower to investigate how much precision can be further

removed while maintaining accuracy, and analyzes how performance is affected.

Pruning

 Another method used to reduce the size of CNN models is pruning, which is usually

applied after training to remove unnecessary weights that may negatively impact performance

without helping (or possibly even hindering) accuracy. After a model is trained, some neurons

that contribute little to a model’s accuracy will have a correspondingly low weight assigned to

10

them. By applying pruning, you remove a ratio (such as 20%) of the lowest scoring neurons from

the network.

There are different types of pruning – weight pruning, neuron pruning, and structured

pruning. Weight pruning removes individual weights between neurons, setting them to zero.

Since the weight is not actually removed, for an FPGA implementation it is dubious whether a

synthesizer will be able to take advantage of the implementation benefits. Neuron pruning is

better, removing entire neurons (and the connections) resulting in a smaller network architecture.

However, again, it is not guaranteed that a synthesizer can take advantage of this, either; it may

need to pad the removed nodes with zeros but still leave them within the network. Structured

pruning, which is the type of pruning used in this thesis, provides the best chance of benefit – it

prunes entire channels and filters, which reduces computations and improves memory

requirements.

Again in [4], pruning was able to compress a model down to 20% of its original size with

no loss of accuracy, and down to around 8% with an accuracy loss of only 0.5%. Han et. al.

performed their work on much larger models to demonstrate the effects of quantization and

pruning combined, so they were able to see sizeable improvements by applying both techniques

together. In this thesis, quantization and pruning are combined with reducing model size as low

as possible for a relatively simple classification task; so, while the results may not be quite as

drastic, the improvements should still be notable as they were in previous works.

11

Chapter 3

Problem Formulation

 The foremost concern, when implementing a CNN onto an FPGA to classify digitally

modulated signals, is reducing the size of the network while maintaining sufficient accuracy.

Techniques such as pruning, quantization, and reducing model size can all be used to compress a

neural network’s implementation footprint without significantly affecting accuracy.

This thesis characterizes the trade-offs between performance and implementation size across

different model architectures; specifically, it evaluates combinations of pruning rates (none,

20%, 30%) and quantization (none, 8-bit, 6-bit, 4-bit) across CNN models with varying layer

counts. The thesis pays close attention to:

• Diminishing returns – at what point does a specific combination of these techniques yield

less-than-ideal results?

• Are there optimal configurations that balance size, latency, and other benchmarks?

• Which techniques should be favored based on observed performance improvements when

implemented?

The approach applied to answering these aforementioned questions is displayed in Fig. 2.

12

Figure 2. Workflow for Model Creation and Benchmarking.

This solution, in Fig. 2, utilizes a standard workflow for model creation, quantization,

pruning, training, and evaluation. First, a test dataset algorithm is created, with labeled “chunks”

of I and Q values corresponding to a specific modulation type. Multiple model architectures are

13

constructed with varying layer counts, which are then divided and categorized by quantization

level and again by pruning rate. The models are trained with a unique training set generated by

the test dataset algorithm, and learning parameters are adjusted until the desired accuracy (100%)

is achieved with a separately generated evaluation dataset. Finally, the benchmarks are then

analyzed to identify trends and identify trade-offs in model compression techniques.

Chapter 4

Methodology

Dataset Generation

The generated data type is a critical component of training and evaluating CNNs.

Therefore, the first task was to create a signal generator that would create the various data types

for the modulation recognition model. Datatypes 𝐷𝑚 were generated – amplitude shift keying

modulation types (4ASK, 8ASK), phase shift keying (BPSK, QPSK, 8PSK, 16PSK), and

quadrature amplitude modulation (8QAM, 16QAM, and 32QAM). The model assumed

normalized I and Q values with noise added to account for real-life conditions. It should be noted

that if the model was trained on noisy data, larger models could maintain 100% evaluation

accuracy even if the noise was turned up to a point where it was almost undiscernible on data

plots. Therefore, a reasonable noise value of 0.005 (typically in Watts, but here it is a

dimensionless ratio) was chosen for both Additive White Gaussian Noise (AWGN) 𝑁𝑎 and phase

noise 𝑁𝑝. This noise value allowed for visible distortion on the modulation types while still

allowing the modulation type to be discernable from the plots. An example of one such plot is

shown in Fig. 3, for the 16QAM modulation type.

14

Figure 3. Generated I and Q Values for 16QAM.

This noise would be combined with the generated data to produce imperfect I and Q data (as

seen in Fig. 3), more like what would be extracted from real-life signals. Additionally, for each

labeled dataset item, the signal generator created a set of 𝑉𝑑 quantity I and Q pairs, grouped into

size 𝑐𝑠 chunks. The data values were split this way since the model would need to see a certain

number of random datapoints to determine modulation type (for example, a normalized I value of

1 and a Q value of 0 can be present in all but two of the modulation types listed, so this datapoint

is useless by itself – and with sufficient noise added, it can be present in all of them). The output of

this signal generator was a data frame 𝐷𝑓 consisting of labeled data values of type 𝐷𝑚, each data

values containing 𝑐𝑠 I and Q pairs that represent a sampled and pre-processed signal. Algorithm 1

outlines the signal generation process to be executed after each set of I and Q values is generated.

15

In Algorithm 1, signal generation functions are not listed for brevity, but each modulation type

𝐷𝑚 had its own function used for generating its respective values. Once the data values are

combined together into sets of size 𝑐𝑠, the individual labels for each datapoint is removed and only

one label for the entire chunk is appended. Once the data is generated, it is then shuffled (while

keeping the datapoints within the same chunk) so that the model does not attempt to learn from the

pattern that the signal generation algorithm creates. Fig. 4 provides a visual representation of this

process.

Algorithm I: CNN Dataset Generation

Inputs: Noise values 𝑁𝑎, 𝑁𝑝, chunk size 𝑐𝑠, quantity 𝑉𝑑.

Output: A data frame 𝐷𝑓 consisting of 𝑉𝑑/𝑐𝑠 labeled, chunked datasets.

1. Initialize qty 𝐷𝑚 list of siggen functions.

2. i = 0.

3. while i ≤ 𝐷𝑚 do:

4. Generate 𝑉𝑑 quantity I, Q pairs and shuffle.

5. Create an empty list 𝐿𝑐.

6. n = 0.

7. for j ← j + 𝑐𝑠 do:

8. Append qty 𝑐𝑠 I and Q pairs to entry n in 𝐿𝑐.

9. Label entry n with associated label 𝐷𝑚.

10. n = n + 1.

11. end for

12. i = i + 1.

13. end for

14. Combine 𝐿𝑐𝑖
 for i = 1 thru 𝐷𝑚. (𝐿𝑐 is the list of I and Q pairs).

15. Convert 𝐿𝑐𝑖
 into dataframe 𝐷𝑓.

16. Return 𝐷𝑓.

16

Figure 4. Data Generation Visualization.

As previously stated, a large set of randomized values of each modulation type is generated, and

then these sets are split into chunks, labeled, and shuffled. This is the methodology for both the

training and evaluation datasets – a separate dataset was generated for evaluation to ensure the

model was not simply memorizing the training data.

Model Creation

Next, the labels were encoded, and these chunks were added into a custom data loader that could

then load the data into a Pytorch model. The models created for this thesis were named “VGG-like”

due to their architecture resembling the model presented by Simonyan et. al. in [17]. The model

consists of several convolutional layers, each followed by ReLU and max pooling layers, and then

17

at the end having several fully connected layers (each also followed by ReLU layers). The first half

(convolutional etc.) dealt with feature extraction, and the second half (the fully connected layers)

dealt with feature classification. For models where quantization was applied, the Brevitas library

was used to quantize the layers individually. Pruning was applied after the model was generated in

various forms, with the weights being pruned at 20% and 30%.

Model Training

Training the model involved defining a Cross Entropy Loss function to evaluate the training

process, and an Adam optimizer for optimizing the model as it learned. The cross-entropy loss was

pulled from the Pytorch library, and is defined as:

𝐿 = − ∑ 𝑦𝑐log (𝑝𝑐)

𝐶

𝑐=1

In the above equation, 𝑦 represents the binary indication (1 or 0, true or false) if the class label

𝑐 is the correct classification. The letter 𝑝 represents the predicted probability of the class label 𝑐

for the current observation. Values for learning rate and weight decay (for L2 regularization, to

prevent overfitting) were tweaked to try and allow the model to converge on an acceptable loss

value, which was also tweaked as needed between 0.030 and 1.000. The training stopped once this

loss value was reached, and the model’s performance was evaluated. This was repeated as necessary

for each model with varying layers, quantization factors, and pruning factors. For models where

pruning was applied, the model was again retrained after pruning to optimize for the lower quantity

of weights that were still being utilized on the model.

18

Model Evaluation

Evaluation was done by simply generating a new random dataset similar to training, and

evaluating correct versus incorrect predictions. Models with less than 100% performance had their

learning parameters tweaked until 100% accuracy could be achieved – the smallest model was

dropped out once quantization began since it failed to reach this level of performance. Model size

was defined by layer count (fully connected, convolutional, ReLU, and max pooling) and noted in

the model names (for example, VGGLike_5f_5c_4re_4mp) with layer counts varying from 5 down

to 2 or 1. Since the training and test datasets both used 2,304 chunks of input data, a 100% accuracy

result could be interpreted as a real-world accuracy between 99.84% and 100%. The upper bound

of this accuracy value can be verified using the normal approximation method [18] and by plugging

in the following values: a 95% confidence level 𝐶𝑙 (a commonly used standard value in statistical

analysis [19]), a critical value 𝑧 of 1.96 (commonly calculated from 𝐶𝑙, also a common value),

sample size 𝑛 of 2,304, the achieved accuracy (100%) 𝐴𝑎, and using a normal approximation

method [19] to calculate the upper bound of confidence interval 𝐵𝑢.

𝐵𝑢 = 𝐴𝑎 ± 𝑧 × √
(𝐴𝑎 × (1 − 𝐴𝑎)

𝑛

From the above equation, the upper bound on the accuracy of this neural network is verified to be

100%. Since this equation would give the same result for the lower bound 𝐵𝑙, the Clopper-Pearson

method was used instead for its calculation. This method accounts for the discrete nature of the

sample size and gives a more conservative value [20].

19

𝐵𝑙 =
1

1 +
𝑛 − 𝐴𝑎 + 1

𝐴𝑎
𝑓∝

2
,2(𝑛−𝐴𝑎+1),2𝐴𝑎

The significance level, ∝, is simply 1 − 𝐶𝑙. The overall lower bound thus works out to be

approximately 99.78%. With a median value of 99.89%, this performance accuracy could be seen

as reliably high performance and would likely perform even better since this lower bound estimation

was so conservative. Since real-world accuracy values of 97.1% [21] for modulation classification

can be considered high, the thesis accepts this methodology and dataset size as sufficient.

During evaluation, benchmark data was generated. Each model was run on its own, on the same

GPU - an NVIDIA RTX 3050 Ti, using NVIDIA’s Compute Unified Device Architecture (CUDA)

to accelerate the model training - and values such as inference time and training throughput were

stored for each model. For hardware utilization, code was generated to estimate FPGA resource

utilization. Since the hardware utilization estimation is not specific to any one FPGA device, and

devices will vary widely based on how the synthesizer distributes the network across the varying

architectures, the estimation is more comparative and assumes the same FPGA target for the varying

model types.

Hardware Utilization Estimation

Hardware utilization is difficult to estimate without synthesizing the model onto an FPGA, since

FPGAs have varying resources available and vendor tools may handle the synthesis differently.

Thus, the following assumptions were made:

20

• A Multiplier Adder Accumulator (MAC) uses one DSP block for the MAC operation

plus another for the accumulator portion in both convolutional and linear layers. This is

a common practice within FPGA implementation and provides an upper bound on DSP

block usage [23].

• For look up tables (LUTs), 4 per bit per layer was a (possibly over-) estimation to account

for additional logic on convolutional layers. For linear layers, the number of input and

output channels was used, again to account for additional logic. In the max pooling

layers, the number of LUTs is based off the number of input channels of each layer. This

is a rough estimate of the logic complexity involved, and actual LUT usage will differ

based on the synthesizer, target hardware, and optimizations used.

• Two flipflops (FFs) per bit were assumed to store the weights and intermediate results,

and then one for the bias parameters for both convolutional and linear layers. Storage

elements are understandably necessary within the pipeline stages of the CNN.

• Block RAM (BRAM) utilization was based on weight matrix size. For this hypothetical

FPGA implementation, each BRAM is assumed to be 32 Kbits, and is measured off the

linear and convolutional layers. Basing BRAM utilization on the weight matrix size is a

logical approach since weights are the primary data stored in BRAMs.

• ReLU layers were left out of the hardware estimation since their impact is very minimal

– they do not require multipliers or a large number of adders, and can be implemented

in-place (meaning it can simply overwrite the input data with its own output data, thus

not requiring any additional storage).

21

• Since pruning leaves zero weights behind, the FPGA being synthesized on is assumed to

have a capability for sparse matrix operations, which allow it to take advantage of

structured pruning, which is supported by C. Zhu et al. [22]

With these assumptions in place, Algorithm II was used to estimate FPGA utilization

benchmarks. Layer counts for number of convolutional, linear, and max pooling (𝐶𝐶, 𝐶𝐿, and 𝐶𝑀,

respectively) as well as values for quantization bit width (𝐵𝑤), non-zero weights (𝑁𝑤), and non-

zero biases (𝑁𝐵) are used to estimate utilization of DSP, LUT, FF, and BRAM blocks on a typical

FPGA (𝐸𝐷, 𝐸𝐿, 𝐸𝐹, 𝐸𝐵).

Algorithm II is written specifically for this VGG-like model architecture, which accounts for

quantization (using bit width) as well as handles the layer types (linear, convolutional, and max

pooling) used. The estimation algorithm also attempts to throw out zeroed components, to give an

idea of pruning’s impact on hardware utilization. To this end, the coefficients 𝐶𝑛𝑤 and 𝐶𝑛𝑏 are used

to take both quantization and pruning into account for both weights and biases – the zeroed

Algorithm II: FPGA Hardware Resource Estimation

Input: Layer counts (𝐶𝐶, 𝐶𝐿, 𝐶𝑀,), quantization bit width 𝐵𝑤, non-

 zero weights 𝑁𝑤, non-zero biases 𝑁𝐵, number of input and

 output channels for the layer 𝐶𝑖 and 𝐶𝑜.

Output: Estimated utilization of FPGA resources:𝐸𝐷, 𝐸𝐿, 𝐸𝐹, 𝐸𝐵.

1. 𝐶𝑛𝑤 = 𝑁𝑤 * 𝐵𝑤 / 32.

2. 𝐶𝑛𝑏 = 𝑁𝑤 * 𝑁𝐵 / 32.

3. 𝐸𝐷 = (2𝐶𝑛𝑤 * 𝐶𝐶) + (2𝐶𝑛 * 𝐶𝐿)

4. 𝐸𝐿 = (4𝐶𝑛𝑤 * 𝐶𝐶) + (𝐶𝑖𝐶𝑜) + (𝐶𝑛𝑤 * 𝐶𝑀 * 𝐶𝑖)

5. 𝐸𝐹 = (2𝐶𝑛𝑤 + 𝐶𝑛𝑏) 𝐶𝐶 + (2𝐶𝑛𝑤 + 𝐶𝑛𝑏) 𝐶𝐿 + (2𝐶𝑛𝑤 + 𝐶𝑛𝑏) 𝐶𝑀

6. 𝐵𝐵 = ((𝐶𝑛𝑤 * 𝐶𝐶) + (𝐶𝑛𝑤 * 𝐶𝐿)) / 32,000

7. Return estimates 𝐸𝐷, 𝐸𝐿, 𝐸𝐹, 𝐸𝐵.

22

components of a layer as well as the unused bit width would be dropped by an appropriately

competent compiler.

Chapter 5

Experiments and Results

Training speed was significantly slower when pruning was applied. On the largest unquantized

models, the largest had a training time of 19.49 seconds, and when pruned at 30% the training time

rose to 28.06 seconds. When quantized to 6 bits, the unpruned model’s training took 99.97 seconds,

whereas the pruned (30%) model took 133.07 seconds. In all cases, it was evident that when

applying techniques to shrink the size of the model, the training process became more difficult as

the model had less resources to work with.

The model’s latency (the time it took for a single task to be processed) during training seemed

consistent at around 2.5 ms for the larger models and 1.7ms for the smaller models, with pruning

having very little effect. Quantizing the models led to an increase of roughly a factor of five, so

from 2.5 ms to 15 ms, without much variation with pruning added.

23

Figure 5. VGGLike_5f_5c_4re_4mp Average Latency at Various Quantization and Pruning Rates.

Figure 6. VGGLike_2f_2c_2re_2mp Average Latency at Various Quantization and Pruning Rates.

24

In Fig. 5, the average training latency for the largest model is shown, and in Fig. 6, the second

smallest. The difference between the larger and smaller models is apparent, with smaller models

have much lower average training latency overall. Quantization seemed to increase the latency by

a factor of 4-6, denoting a reduced performance when bit count is truncated – with pruning

providing a slight benefit. Note that for the model titles, the fully connected layers, convolutional

layers, ReLU layers, and max pooling layers are stated in shorthand – in Fig. 6, there are two fully

connected layers, two convolutional layers, two rectified linear unit layers, and two max pooling

layers.

 Training throughput (number of requests that can be processed per unit of time) was much higher

for smaller models than larger ones, reflecting much faster performance (16,000 samples/sec for

the smallest, versus around 7,500 samples/sec for the larger models). Quantization in both cases cut

the throughput down by a factor of three regardless of bit size, with pruning not having much effect.

25

Figure 7. All Models Compared – Throughput (samples/sec) and Quantization, Sorted by Model Architecture. Each

Layer is a Different Pruning Rate.

26

Figure 8. VGGLike_5f_5c_4re_4mp Average Throughput at Various Quantization and Pruning Rates.

Figure 9. VGGLike_2f_2c_2re_2mp Average Throughput at Various Quantization and Pruning Rates.

27

In Fig. 7, throughput (the amount of samples per second that the model can process) at different

model sizes versus quantization rate is shown on a 3-dimensional graph. In Fig. 8 and 9, the largest

and second-smallest models are displayed individually. Throughput performance suffers once

quantization is introduced, with pruning (generally) providing a slight benefit. In Fig. 7, a graph

layers are close here, with more aggressively-pruned models having slightly better performance;

however, in all cases, the non-quantized model has significantly higher throughput.

Inference time (the time it took for the model to make predictions on a single batch of inputs)

during evaluation raised by a factor of ten when quantized by any amount, with pruning reducing

the inference time linearly when applied. Smaller models had less of a growth, in proportion with

their lower original inference time (0.5 to 5ms or so when quantized, with larger models increasing

from around 1ms to 10ms). Inference time is one of the most important metrics when measuring a

model’s performance, thus highlighting the importance of quantization and pruning for both size

and performance of a CNN model.

28

Figure 10. All Models Compared – Inference Time During Evaluation (ms) and Quantization, Sorted By Model

Architecture. Each Layer Is a Different Pruning Rate.

29

Figure 11. VGGLike_5f_5c_4re_4mp Inference Time (ms) at Various Quantization and Pruning Rates.

Figure 12. VGGLike_2f_2c_2re_2mp Inference Time (ms) at Various Quantization and Pruning Rates.

30

Fig. 10 (3-d) and Fig. 11 and 12 (largest and second-smallest model) show the average inference

time during evaluation. In Fig. 11 and 12, inference time scales up rapidly with the introduction of

quantization, with pruning giving a marked improvement in performance when applied. Fig. 11

shows even larger performance gains when pruning is applied, with a much less but still noticeable

improvement in smaller models as shown in Fig. 12.

Hardware resource utilization estimates were heavily influenced by the size of the model, and

quantization caused a cut in resource utilization by a factor of 4. Further quantization showed a

linear and predictable cut in resource utilization for all models. Pruning seemed to have a linear

effect on reducing resource utilization further, with a 20% prune rate corresponding to a roughly

10% drop in resource utilization. Estimating hardware utilization is very rough in this case, since it

is difficult to determine that pruning will provide any reduction in resources if the synthesizer

cannot handle it properly, without synthesizing the model.

31

Figure 13. VGGLike_5f_5c_4re_4mp DSP Utilization at Various Quantization and Pruning Rates.

Figure 14. VGGLike_5f_5c_4re_4mp DSP Utilization at Various Quantization and Pruning Rates.

32

 Fig. 13 and 14 show DSP utilization for the largest and second-smallest models. Hardware

utilization results for flipflops, look-up tables, and block RAM were similar, predictably due to the

way these resources were estimated.

Figure 15. All Models Compared – Flipflop Utilization and Quantization, Sorted by Model Architecture.

 In Fig. 15, similar estimated utilization reductions can be viewed for flipflops. This is not

surprising, but does visualize the major impact quantization can have on the model’s size. The

visualizations for lookup tables and BRAM (Fig. 16 and 17) are similar. As with the previous 3-D

graph, each layer is a different pruning rate.

33

Figure 16. All Models Compared – Look-Up Table Utilization and Quantization, Sorted by Model Architecture.

Figure 17. All Models Compared – BRAM Utilization and Quantization, Sorted by Model Architecture.

34

 Appendices A, B and C contain tabulated data that shows benchmarking and utilizations for

models with no pruning, 20% pruning, and 30% pruning, respectively. All of the numerical data

used to create these visualizations is listed there, for a more detailed look on the data that was used

to make these figures. Lastly, Appendices D through J hold all of the 2-D graphs for the various

metrics held to the same scale, as to provide a more consistent visualization of how quantization

and pruning affected the benchmarks of the different model architectures.

Chapter 6

Conclusion and Future Work

Automatic Modulation Recognition (AMR) is a crucial function in many radio receiver systems,

allowing the system to classify the incoming signal and decode the data being transmitted. CNNs

are a powerful tool for many classification tasks such as this one, and can be used in place of

algorithms to serve this function with a high level of performance. For resource-constrained

applications such as FPGAs, the size of CNNs can quickly become an issue. This paper explored

the combination of various techniques to reduce the implementation size - primarily by combining

quantization, pruning, and reduced model size. Quantization, the reduction in size (and precision)

of weights and activation values, was one method. Pruning, the removal of vestigial or low-

contribution weights and connections within a model, was another. By combining these techniques

with model simplification, this thesis developed compact and efficient CNN models that maintained

a high degree of accuracy and while reducing implementation size, and explored the tradeoffs while

doing so.

35

The hardware benefits of quantization are well-established, but pruning less so, since

synthesizers may not be able to take advantage of the opportunity to discard pruned weights – if the

synthesizer cannot handle this, the input data will still need to pass through these zeroed layers as

they are still connected. There are methodologies proposed to take advantage of pruning, such as

spare matrix operations, but they are not widely available or utilized.

The benefits of pruning, while minor in comparison to quantization when viewing through the

lens of resource utilization, become more apparent when the model is being trained. Being able to

drop the lowest-scoring weights allows the model to converge much faster on a desired loss value

when training, making it a good technique to combine with quantization as a more heavily quantized

model may struggle to reach its final loss value. Even if a specific FPGA cannot fully realize the

benefits of pruning for implementation size, the benefits it offers in conjunction with quantization

could potentially result in even more hardware savings. Additionally, with smaller model

architectures being the most optimal, it was noted that convergence during training was sometimes

easier when pruning was applied, and the model was retrained. While the benefit was difficult to

observe as the models tested were already small, this may have a greater benefit when scaled up to

more difficult classification problems (and thus, greater overall model sizes).

Another very noticeable benefit of pruning was in throughput and inference time – the speed at

which the model processes inputs. The best performance came from models that were the smallest

and most highly pruned – suggesting that pruning is a “free” source of both performance and

utilization improvements. It can also be used to offset the performance downsides of quantization,

which may be unavoidable to the designer due to utilization requirements but should not be

overlooked when trying to get the best performance possible.

36

While this work focused primarily on evaluating reduced-size models for modulation

classification, many promising research directions remain open. Implementing Python libraries that

take advantage of sparse matrix operations and can better handle discarding weights lost through

structural pruning would be an excellent first step to evaluating the actual performance and

implementation improvements that combining structural pruning, quantization, and model

simplification can provide. There are several being worked on, but no official tool seems to exist.

Examining actual implementations on FPGAs, as opposed to just estimations, would be valuable as

well if combined with a synthesizer that can also take advantage of structural pruning. Measuring

real-world performance of these techniques and comparing them with their software benchmarks

would offer more insight on the actual implementation gains that are achieved by quantization and

structured pruning. Both real-world measurements and effective sparse-matrix implementation

would produce tangible benefits in efficient CNN hardware implementation.

References

[1] S. Kumar, R. Mahapatra and A. Singh, "Automatic Modulation Recognition: An FPGA Implementation," in IEEE

Communications Letters, vol. 26, no. 9, pp. 2062-2066, Sept. 2022, doi: 10.1109/LCOMM.2022.3184771.

[2] F. N. Iandola, S. Han, H. M. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer, “SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5 MB model size”, arXiv:1602.07360, 2016.

[3] S. Han, J. Pool, J. Tran, and W. J. Dally, "Learning both Weights and Connections for Efficient Neural Networks,"

in Advances in Neural Information Processing Systems 28 (NIPS 2015), 2015, pp. 1135-1143.

[4] S. Han, H. Mao, and W. J. Dally, "Deep Compression: Compressing DNNs with Pruning, Trained Quantization

and Huffman Encoding," in Proceedings of the 4th International Conference on Learning Representations (ICLR

2016), 2016.

37

[5] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, "EIE: Efficient Inference Engine on

Compressed Deep Neural Network," in Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA '16), 2016, pp. 243-254.

[6] P. M. Gysel, “Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks”, M.S. thesis,

University of California Davis, 2016.

[7] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks," in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA '15), 2015, pp. 161-170.

[8] D. Góez, P. Soto, S. Latré, N. Gaviria, and M. Camelo, "A Methodology to Design Quantized Deep Neural

Networks for Automatic Modulation Recognition," Algorithms, vol. 15, no. 12, p. 441, Dec. 2022, doi:

10.3390/a15120441.

[9] D. Chauhan and V. Kanwar, “Comparision of BER's of QAM and PSK Modulation Techniques for Channel

Estimation by Using LS Estimator in MIMO-OFDM System”, International Journal of Advanced Research in

Computer and Communication Engineering, vol. 6, no. 3, pp. 825-832, 2017 , doi:

10.17148/IJARCCE.2017.63194.

[10] O. A. Dobre, A. Abdi, Y. Bar-Ness and W. Su, “A Survey of Automatic Modulation Classification Techniques:

Classical Approaches and New Trends”, IET Communications, vol. 1, no. 2, pp. 137-156, April 2007, doi:

10.1049/iet-com:20050176.

[11] M. A. Abdel-Moneim, W. El-Shafai, N. Abdel-Salam, E.-S. M. El-Rabaie, and F. E. Abd El-Samie, "A Survey

of Traditional and Advanced Automatic Modulation Classification Techniques, Challenges, and Some Novel

Trends," International Journal of Communication Systems, vol. 34, no. 10, pp. 1-36, May 2021, doi:

10.1002/dac.4762.

[12] J. Schmidhuber, "Annotated History of Modern AI and Deep Learning," IDSIA, Tech. Rep. IDSIA-22-22, 2022,

arXiv preprint arXiv:2212.11279.

[13] D. F. Specht, "A general regression neural network," in IEEE Transactions on Neural Networks, vol. 2, no. 6, pp.

568-576, Nov. 1991, doi: 10.1109/72.97934.

38

[14] K. Leung, "How to Easily Draw Neural Network Architecture Diagrams," Towards Data Science, Aug. 23, 2021.

[Online]. Available: https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-

a6b6138ed875.

[15] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, "Introduction to Machine

Learning, Neural Networks, and Deep Learning," Translational Vision Science & Technology, vol. 9, no. 2, pp.

14, Feb. 2020, doi: 10.1167/tvst.9.2.14.

[16] A. Griffin, "Google and ChatGPT face major threat from open source community, leaked document warns," The

Independent, May 5, 2023. [Online]. Available: https://www.independent.co.uk/tech/google-chatgpt-open-

source-leaked-document-b2333287.html. [Accessed May 5, 2023].

[17] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," in

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[18] D. G. Altman and J. M. Bland, "Standard deviations and standard errors," BMJ, vol. 331, no. 7521, pp. 903, Oct.

2005, doi: 10.1136/bmj.331.7521.903.

[19] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical Methods for Rates and Proportions, 3rd ed. Hoboken, NJ, USA:

John Wiley & Sons, Inc., 2003, doi: 10.1002/0471445428.

[20] L. A. Orawo, "Confidence Intervals for the Binomial Proportion: A Comparison of Four Methods," Open Journal

of Statistics, vol. 11, pp. 806-816, 2021.

[21] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-D. Yao, "Modulation Classification

Based on Signal Constellation Diagrams and Deep Learning," IEEE Transactions on Neural Networks and

Learning Systems, vol. 30, no. 3, pp. 718-727, March 2019, doi: 10.1109/TNNLS.2018.2850703.

[22] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang and H. Shen, "An Efficient Hardware Accelerator for Structured

Sparse Convolutional Neural Networks on FPGAs," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 28, no. 9, pp. 1953-1965, Sept. 2020, doi: 10.1109/TVLSI.2020.3002779.

[23] A. Rahman, J. Lee and K. Choi, "Efficient FPGA acceleration of Convolutional Neural Networks using logical-

3D compute array," 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,

Germany, 2016, pp. 1393-1398.

https://www.independent.co.uk/tech/google-chatgpt-open-source-leaked-document-b2333287.html
https://www.independent.co.uk/tech/google-chatgpt-open-source-leaked-document-b2333287.html

39

Appendix A: Tabulated Model Benchmarks, 0% Pruning

Model Throughput

(smpls/sec)

Inference

Time (ms)

DSP FF LUT BRAM

vgglike_5f_5c_4re_4mp 42515.57589 0.75266533 4520576 4523497 3827984 68

vgglike_5f_4c_4re_4mp 43475.39937 0.73604844 2685568 2687977 1730832 38

vgglike_5f_3c_4re_3mp 42560.41057 0.75187245 2488960 2491113 1337516 37

vgglike_3f_3c_2re_3mp 64163.34569 0.49872711 719488 720361 452780 10

vgglike_3f_2c_2re_2mp 69683.10614 0.45922178 670336 671081 354376 10

vgglike_2f_2c_2re_2mp 46037.42437 0.69508667 546176 546793 292296 8

vgglike_2f_1c_1re_1mp 60806.95937 0.52625555 533888 534441 267620 8

vgglike_5f_5c_4re_4mp_8bit 2271.358926 14.0884823 1130144 1130874 956996 14

vgglike_5f_4c_4re_4mp_8bit 3504.610623 9.13082891 671392 671994 432708 9

vgglike_5f_3c_4re_3mp_8bit 3579.024773 8.9409831 622240 622778 334379 9

vgglike_3f_3c_2re_3mp_8bit 4778.816763 6.69621825 179872 180090 113195 2

vgglike_3f_2c_2re_2mp_8bit 5901.700326 5.4221662 167584 167770 88594 2

vgglike_2f_2c_2re_2mp_8bit 6286.205148 5.09051156 136544 136698 73074 2

vgglike_2f_1c_1re_1mp_8bit 7624.456587 4.19702042 133472 133610 66905 2

vgglike_5f_5c_4re_4mp_6bit 2994.663773 10.6856737 847608 848155 717744 9

vgglike_5f_4c_4re_4mp_6bit 3737.778806 8.56123427 503544 503995 324528 6

vgglike_5f_3c_4re_3mp_6bit 4397.859183 7.27626754 466680 467083 250782 6

vgglike_3f_3c_2re_3mp_6bit 4339.754317 7.37368931 134904 135067 84894 1

vgglike_3f_2c_2re_2mp_6bit 5939.85795 5.38733422 125688 125827 66444 1

vgglike_2f_2c_2re_2mp_6bit 6509.589044 4.91582491 102408 102523 54804 1

vgglike_2f_1c_1re_1mp_6bit 7447.408118 4.29679688 100104 100207 50178 1

vgglike_5f_5c_4re_4mp_4bit 3225.036173 9.92236933 565072 565437 478496 6

vgglike_5f_4c_4re_4mp_4bit 3571.89384 8.95883289 335696 335997 216352 4

vgglike_5f_3c_4re_3mp_4bit 3707.013324 8.63228621 311120 311389 167188 4

vgglike_3f_3c_2re_3mp_4bit 4438.620262 7.20944756 89936 90045 56596 1

vgglike_3f_2c_2re_2mp_4bit 5735.850701 5.57894577 83792 83885 44296 1

vgglike_2f_2c_2re_2mp_4bit 6870.390966 4.65766798 68272 68349 36536 1

40

Appendix B: Tabulated Model Benchmarks, 20% Pruning

Model Throughput

(smpls/sec)

Inference

Time

(ms)

DSP FF LUT BRAM

vgglike_5f_5c_4re_4mp_pr_20 38870.94993 0.8232369 4100680 4103601 3492195 59

vgglike_5f_4c_4re_4mp_pr_20 43908.16842 0.7287938 2467102 2469511 1611759 34

vgglike_5f_3c_4re_3mp_pr_20 40183.21292 0.7963524 2326774 2328927 1255670 33

vgglike_3f_3c_2re_3mp_pr_20 61449.43866 0.5207533 683444 684317 433753 8

vgglike_3f_2c_2re_2mp_pr_20 81126.02952 0.394448 558112 558857 298249 7

vgglike_2f_2c_2re_2mp_pr_20 73300.72132 0.4365578 441646 442263 239968 6

vgglike_2f_1c_1re_1mp_pr_20 85931.15993 0.3723911 429436 429989 215394 6

vgglike_5f_5c_4re_4mp_8bit_pr_20 3457.265253 9.2558707 1020872 1021602 872829 12

vgglike_5f_4c_4re_4mp_8bit_pr_20 3197.104973 10.009055 612291 612893 398674 6

vgglike_5f_3c_4re_3mp_8bit_pr_20 4104.443491 7.7964284 584792 585330 315438 6

vgglike_3f_3c_2re_3mp_8bit_pr_20 4411.225465 7.25422 170939 171157 108261 1

vgglike_3f_2c_2re_2mp_8bit_pr_20 5972.038408 5.3583045 138846 139032 74225 1

vgglike_2f_2c_2re_2mp_8bit_pr_20 7081.714804 4.5186796 110412 110566 59987 1

vgglike_2f_1c_1re_1mp_8bit_pr_20 9109.093927 3.5129729 107359 107497 53848 1

vgglike_5f_5c_4re_4mp_6bit_pr_20 3426.649068 9.3385694 688967 689514 585700 7

vgglike_5f_4c_4re_4mp_6bit_pr_20 3220.484857 9.936392 503544 503995 324528 6

vgglike_5f_3c_4re_3mp_6bit_pr_20 3820.536237 8.3757876 379357 379760 206745 4

vgglike_3f_3c_2re_3mp_6bit_pr_20 4674.838357 6.8451565 112181 112344 72362 1

vgglike_3f_2c_2re_2mp_6bit_pr_20 5628.423662 5.6854284 101906 102045 54551 1

vgglike_2f_2c_2re_2mp_6bit_pr_20 6921.948775 4.6229756 82810 82925 45005 1

vgglike_2f_1c_1re_1mp_6bit_pr_20 8971.964801 3.5666658 80519 80622 40385 1

vgglike_5f_5c_4re_4mp_4bit_pr_20 3590.256219 8.9130129 457484 457849 388926 5

vgglike_5f_4c_4re_4mp_4bit_pr_20 3770.272669 8.4874498 271115 271416 175684 2

vgglike_5f_3c_4re_3mp_4bit_pr_20 3329.464365 9.6111556 252833 253102 137443 2

vgglike_3f_3c_2re_3mp_4bit_pr_20 3662.806307 8.7364707 75319 75428 48873 0

vgglike_3f_2c_2re_2mp_4bit_pr_20 5604.496711 5.7097009 68587 68680 36693 0

vgglike_2f_2c_2re_2mp_4bit_pr_20 7059.077542 4.5331702 55200 55277 30000 0

41

Appendix C: Tabulated Model Benchmarks, 30% Pruning

Model Throughput

(smpls/sec)

Inference

Time

(ms)

DSP FF LUT BRAM

vgglike_5f_5c_4re_4mp_pr_30 37357.05082 0.8565987 3921346 3924267 3372933 56

vgglike_5f_4c_4re_4mp_pr_30 45075.67083 0.7099173 2368706 2371115 1554533 33

vgglike_5f_3c_4re_3mp_pr_30 40861.68214 0.7831298 2274602 2276755 1230313 32

vgglike_3f_3c_2re_3mp_pr_30 56124.85914 0.5701573 670438 671311 427970 8

vgglike_3f_2c_2re_2mp_pr_30 76768.47387 0.4168378 501186 501931 269675 6

vgglike_2f_2c_2re_2mp_pr_30 67727.16125 0.472484 388256 388873 213054 5

vgglike_2f_1c_1re_1mp_pr_30 116310.6271 0.2751253 376186 376739 188769 5

vgglike_5f_5c_4re_4mp_8bit_pr_30 3442.857481 9.2946049 984448 985178 845998 12

vgglike_5f_4c_4re_4mp_8bit_pr_30 4039.304879 7.9221552 595788 596390 392452 6

vgglike_5f_3c_4re_3mp_8bit_pr_30 4093.893893 7.8165191 565397 565935 305848 6

vgglike_3f_3c_2re_3mp_8bit_pr_30 5199.511001 6.1544249 167006 167224 106431 1

vgglike_3f_2c_2re_2mp_8bit_pr_30 5990.637622 5.3416685 125122 125308 67361 1

vgglike_2f_2c_2re_2mp_8bit_pr_30 6642.894936 4.8171769 97084 97238 53307 1

vgglike_2f_1c_1re_1mp_8bit_pr_30 4639.921786 6.896668 94046 94184 47192 1

vgglike_5f_5c_4re_4mp_6bit_pr_30 3369.401223 9.4972364 618622 619169 533372 7

vgglike_5f_4c_4re_4mp_6bit_pr_30 3745.555469 8.5434591 380459 380910 252706 4

vgglike_5f_3c_4re_3mp_6bit_pr_30 4419.803478 7.2401409 341611 342014 187390 4

vgglike_3f_3c_2re_3mp_6bit_pr_30 5035.425974 6.3549738 109904 110067 71919 1

vgglike_3f_2c_2re_2mp_6bit_pr_30 6318.503118 5.0644907 91765 91904 49482 1

vgglike_2f_2c_2re_2mp_6bit_pr_30 7754.058481 4.1268711 72817 72932 40006 1

vgglike_2f_1c_1re_1mp_6bit_pr_30 4715.629233 6.7859449 70536 70639 35394 1

vgglike_5f_5c_4re_4mp_4bit_pr_30 3555.162991 9.0009938 403783 404148 344337 4

vgglike_5f_4c_4re_4mp_4bit_pr_30 3845.95414 8.320432 242682 242983 160765 2

vgglike_5f_3c_4re_3mp_4bit_pr_30 3576.935028 8.9462067 235009 235278 129074 2

vgglike_3f_3c_2re_3mp_4bit_pr_30 4886.274699 6.5489564 74157 74266 48486 0

vgglike_3f_2c_2re_2mp_4bit_pr_30 6899.709485 4.6378764 60405 60498 32601 0

vgglike_2f_2c_2re_2mp_4bit_pr_30 7121.460947 4.49346 48540 48617 26666 0

42

Appendix D: Average Training Latency, All Models

43

Appendix E: Average Evaluation Throughput, All Models

44

Appendix F: Average Inference Time (Evaluation), All Models

45

Appendix G: DSP Utilization, All Models

46

Appendix H: Flipflop Utilization, All Models

47

Appendix I: Look-up Table Utilization, All Models

48

Appendix J: Block RAM Utilization, All Models

