Resource and Performance Improvements of Optimized
Convolutional Neural Networks for FPGA Implementations of

Automatic Modulation Recognition
Joshua Rothe, Dr. Haya Shajaiah — Johns Hopkins University, USA

59th Annual Conference on Information Science and Systems

y-X
(el>)
A

Advancing Technology
for Humanity

\ 1 ieee.org

The professional home for the engineering and technology community worldwide

\'

Outline

> Introduction

» Other/Prior Work
» Motivation

» Proposed Work

» Methodology

> Results

» Conclusion/Future Work

< IEEE

The professional home for the engineering and technology community worldwide

Introduction \l

Background

» Automatic Modulation Recognition

(Detection) — detects the modulation of a
radio frequency (RF) signal

&}—‘ Encode Modulation —-T\Q\\
« Wireless 4
. channel
> Two stage system - feature extraction —~
and classification ,. \l\

Recovered

preprocessing Receiving
EC module anienna
i Decode Demodulation
signal

-

Juan Wang, Guan Gui, Hikmet Sari, Generalized
automatic modulation recognition method based
on distributed learning in the presence of data mismatch

problem, Physical Communication, Volume 48, 2021,
101428, ISSN 1874-4907,
\ 3 https://doi.org/10.1016/j.phycom.2021.101428. :

The professional home for the engineering and technology community worldwide

l \'

ntroduction

Convolutional Neural Networks

» Convolutional layer — produces a feature
map
» Rectified Linear Unit layer — introduces come2

non-linear properties to the system,
helps detect complex features /

» Max pooling layer — reduces special r(T L.
dimensions of a layer to reduce _ preerandl IR
computational load, make model more
resilient to distortions/noise convolutonal + ReLU

» Fully connected layer — takes the data g
from previous layers and classifies them

224 % 224 % 64

K. Leung, “How to Easily Draw Neural Network
Architecture Diagrams | TDS Archive,” Medium,
Aug. 23, 2021.

https://medium.com/data-science/
how-to-easily-draw-neural-network-architecture-
\ 4 diagrams-a6b6138ed875. :

The professional home for the engineering and technology community worldwide

\'

Introduction

Problem

» CNNs are resource intensive

Lovyerlpg resource ut|_I|zat.|qn while ?go N I % ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ —
maintaining accuracy is critical 3 = / %

e

" Erampleof ulzation on XiwPNa - § Y % ----- % ------ B % ''''' ,

accelerator for Embedded FPGAs

LUT BRAM DSP
Hardware Resource type

Other Work A

"Automatic Modulation Recognition: An FPGA Implementation”

Algorithm 1 Iterative Pruning Based Training Method

Input: Total number of pruning iteration & = 50, Pruning
Amount per iteration ¢ = 0.2, Total number of
. . training Epochs = F = 30, Minimum Accuracy =
> Quantization 587
Output: Pruned model
1 for Pruning lterations=1:k do
> Pru n I ng Best Accuracy = 0
for Epochs =1:E do
Train the Model and find Test Accuracy

> ReCtified Li near U n itS (Re LU S) if Test Accuracy > Best Accuracy then
save model We;ghts ’

> Synthesizes using FINN in Vivado st Accuracy = Test Accuracy

if Test Accuracy < Best Accuracy for

10 consecutive Epochs then
| Stop Training

100
—+— RUNet(6, 6, 6)°
QMCNet (4, 5, 6)F

80{ —=— QMCNet(4, 5, 6) end
—— QMCNet(8, 8, 8) end
60 Basqiine(8. 8, 6) g if Test Accuracy < Minimum Accuracy then
5 | | Stop Pruning Iteration

WM — = end
Prune the model weight to &
10 20 30 end

40 907

20

Classification Accuracy [in %]

S. Kumar, R. Mahapatra and S. Anurag,
"Automatic Modulation Recognition:

0% o o 10 20 30 AnFPGAImplementation,”
Signal-to-Noise Ratio [in dB] IEEE Communications Letters, vol. 26, no. 9,

\ 6 pp. 2062-2066, 2022.

The professional home for the engineering and technology community worldwide

%

rior Work

Quantization and Pruning of Convolutional Neural Networks for Efficient FPGA Implementation

Average Inference Time by Quantization and Pruning for vaglike_Sf_Sc_4re_4mp

» Overlaps with current work — CNNs of S
various model sizes were created and
trained l
» Performance evaluated on GPU using ,,

PyTorch and CUDA s =

e 11. VGGLike_if_Jc_dre_dmp Inference Time (ms) at Varions Quantization and Pruning Rares.

Average Inference Time by Quantization and Pruning for voglike_2f_2c_Zre_2mp

> Implemented varying levels of =
Quantization and Pruning, as well as
ReLU and Max Pooling layers, and varying
model sizes
.

J. A. Rothe, Quantization and Pruning of Convolutional hone abit it abit
Neural Networks for Efficient FPGA Implementation of Guantization I E E E
Digital Modulation Detection Firmware . 4

’ Figure 12. VGGLike €_2mp Iference Time (ms) ar Varions Quantizarion and Pruning Rares.
7 Johns Hopkins University, 2024. = ee ey D <
https://jscholarship.library.jhu.edu/handle/1774.2/69928

The professional home for the engineering and technology community worldwide

\'

Motivation

» Various methodologies can be used to reduce utilization, combining several methods may be
particularly useful

» Other works usually focus on one or two, controlling the other variables for more noteworthy
results (e.g. large model sizes, so quantization is more impactful)

» Goal is to combine all methodologies and analyze what works best

< IEEE

The professional home for the engineering and technology community worldwide

Proposed Work

» Combination of Methodologies
- Bit Quantization
- Pruning
- Shrinking Model Architectures
- RelU Layers
- Max Pooling Layers
- One-Dimensional CNNs
- Data Preprocessing (Normalized | and Q values)

» Benchmarking

- Done post-synthesis using Xilinx Vivado with the
help of the FINN library

< IEEE

The professional home for the engineering and technology community worldwide

\'

Methodology

Signal Generation

» Generate normalized | and Q signal pairs for
various modulation types (4ASK, 8ASK, BPSK,
QPSK, 8PSK, 16PSK, 8QAM, 16QAM, 32QAM)

» Associate pairs together, label them, split them
into sets of 32 and shuffle

» After generating all data types, shuffle the sets
again amongst themselves

» Different generated datasets for training and
evaluation

N\ v

16QAM Signal Data Plot. X =1, Y = Q

10+

0.5+

0.0+

-1.0 1

4ASK —

8ASK

BPSK

Algorithm I: CNN Dataset Generation

Inputs: Noise values N, N,,, chunk size ¢, quantity V;.

Output: A data frame Dy consisting of Vy/c, labeled,
chunked datasets.

1. Initialize qty D,, list of siggen functions.

2.i=0.

3. whilei <D, do:

4. Generate V; quantity I, Q pairs and shuffle.

5. Create an empty list L.

6. n=0.

7. forj«j+cgdo:

8. Append qty ¢; Iand Q pairs to entry n in L.
9. Label entry n with associated label D,y,.

10. n=n+1.

11. end for

12. i=i+1l.

13. end for

14. Combine L, for i = 1 thru Dy,.
LS. Convert L, into dataframe Dy.
16. Return Dy.

< IEEE

The professional home for the engineering and technology community worldwide

M \'

ethodology

Model Generation

» Create 1-D CNNs of various layer counts

» Train them using the training dataset with
appropriate parameters (learning rate, loss
function threshold)

» Model trains repeatedly over the dataset until a
desired loss function is achieved

If a loss function never converges low enough,
the model is retrained (would result in poor
accuracy)

N\

or 1, layer_config in enumerate{config[’
layer_type = list(layer_config.keys()
layer params = layEP_CﬂnFiB[lajEP_t}pE]
if layer type.startswith('«
layer = QuantConvild(
in channels=layer params['in_channe
out channels=layer params

kernel size=layer params|
stride=layer params|['s
padding=layer_| paramE'
weight quant type=0Q .
weight bit width= quanfl"aflun bits
)
elif layer type.startswith{ fc"):

< IEEE

The professional home for the engineering and technology community worldwide

Results

Performance (Training)

> Training
- Smaller or more optimized models are harder to
train and require more tweaking

- Retraining and multiple attempts needed for most
aggressively shrunk models

- Generally, lower learning rates and higher loss
thresholds for smaller models, especially for post-
pruning training

I B |

Pre-Pruning Epochs Across All Models

vgglike_6f_6¢_Sre_5mp

Post-Pruning Epochs Across All Models

vaglike_6f_6¢_Sre_Smp

Pruning Rate
10%

- 0%
- 30%

vgglike_Sf_Sc_dre_amp

voglike_Sf_Sc_dre_amp

vgglike_4f_dc_3re_3mp

]

300
Pruning Rate Pruning Rate
0% 2 250 o%
10% 3 10%
0% | & 200 - 20%
- 30% 2 150 - 0%
5
£ 100
8

vgglike_4f 4c_3re_3mp

vgglike_3f_3c_2re_2mp

300
Pruning Rate Pruning Rate
0% | =250 %
w% |8 10%
0% | & 200 - 20%
- % | £ —
0% 1 £ 150
£ 100
4

I— |

vgglike_3f_3c_2re_2mp

Quantization Level

300
Pruning Rate Pruning Rate
0% 2 250 o%
0% | 8 10%
—20% | & 200 - 20%
o
0% | £, - 30%
% 100
&
2 8 6

S—— |

2 8 6 a
Quantization Level

< IEEE

The professional home for the engineering and technology community worldwide

R \l

esults

Performance (Evaluation)

Estimated Throughput (FPS) Across All Models Estimated Throughput (FPS) Across All Models (Adjusted Y-Axis)

vgolike_6f_6c_Sre_Smp Le6 vgolike_6f_6c_Sre_Smp

» Throughput =5

o
0% g 10%
-0 Ei20 —20%
- 0% H - 0%
E 115
o

vgglike_Sf Sc_dre_ dmp 1e6 vgglike_Sf_5c_dre_dmp

- For FINN implementations, you can set
target throughput and synthesizer will try
to match)

- Quantization and pruning seem to apply
after the synthesizer optimizes for the
target performance, as gains above target

are seen T I

mated Throu
e e B

vgglike_af_dc_3re_3mp 106 vgglike_4f 4c_3re 3mp

- Synthesizer optimizes for utilization — thus, ‘. . : =l m ._
performance gains could be taken away to :..| m B Y
favor utilization gains . 8 =5

s ¥ IEEE

The professional home for the engineering and technology community worldwide

Results

Performance (Utilization) .

» BRAM and LUT-RAM

- Synthesizer optimizes for utilization as well as
power, pushes storage from BRAM onto LUT-RAM
when possible

- Only takes advantage of pruning at the smallest
guantization rate — inconsistent, but shows the
synthesizer does recognize pruning

Block RAM Utilization

» Model size did not affect results here
- All model sizes were the same graph — due to

“folding”

- FINN library will store weights and values and load :
them into the FPGA each clock cycle, prioritizing
utilization

Block RAM Utilization by Quantization and Pruning Rate for vaglike_3f_3c_2re_2mp

Pruning Rate
0%
10%

- 20%

- 30%

LUT-RAM Utilization by Quantization and Pruning Rate for vgglike_3f_3c_2re_2mp

Pruning Rate

10%
- 20%
- 0%

8 6 a

Quantization Level

< IEEE

The professional home for the engineering and technology community worldwide

\'

Results

Performance (Increased Target Throughput)

> Increased Clock Speed
- Synthesizer could not go over ~120

MHz
TABLE L. 8-BIT QUANTIZATION, 20% PRUNING UTILIZATION
> Increased Target Throughput —
. . Model LUTs | FFs | BRAM | Carry | Throughput
- Gains from smaller models begin to VGGlike 6 | 9212 | 23,582 | 32 | L1168 | 2887202.762
become apparent, synthesizer will VGGiite 519267 | 23728 | 32 Hg? igﬁigiggé
. . - T . VGGlike 4 | 9,058 23,469 32 » .
still prioritize utilization VGGlike 3 | 9.131 | 23578 | 29 | 1171 | 3023267.063

< IEEE

The professional home for the engineering and technology community worldwide

\'

Conclusion

Design Considerations

» For any design, utilization is balanced against performance and accuracy

» FINN library and Vivado synthesizer will prioritize utilization while meeting (designer-defined) performance
goals. Workflow is to set performance goals FIRST, synthesizer handles resource optimization after

» Quantization gives best gains — 20-30% drop in utilization with 2-bit removal
» Pruning benefits minimal, best at lower quantization values

» Aggressive pruning combined with aggressive quantization allowed all BRAM usage to move to LUT-RAM —
conserving valuable resources (and possibly increasing performance)

- ¥ IEEE

The professional home for the engineering and technology community worldwide

Backup Slides

< IEEE

Advancing Technology
\ 17 ieee.org for Humanity

The professional home for the engineering and technology community worldwide

\'

Other Work

Ristretto

» Varying quantization values of weights
per each layer, strove to find the
“optimal” quantization value for each
weight in a model

» Automated this search and ran on GPUs
with CUDA

» Combined with RelLU layers and Max
Pooling layers for greater utilization
savings

N\

Weight Analysis A:tw.atlunﬁnal';ms Bit-Width Reduction

I L | L 3 |
Test the Accuracy

Using Training 5et

Fine-tuning

Figure 9.1. Network approximation flow with Ristretto.

P. M. Gysel, Ristretto: Hardware-Oriented Approximation
of Convolutional Neural Networks,
University of California Davis, 2016.

< IEEE

The professional home for the engineering and technology community worldwide

0 \l

ther Work

Quantized Deep Neural Networks for Automatic Modulation Recognition

» Similar to current work — used FINN
library to implement quantified CNNs
onto Xilinx FPGAs for AMR

[o:]
Il

Normalized inference cost score
Y [¥,]
L 1

I NICS

~l
!

[=2]
1

» Evaluated different quantization levels

w
!

[}
Il

» Future work — wanted to combine this
with other quantization techniques or N

pru n“’]g VGG10 original VGG10 (8) VGG10 (10) Our work

Figure 9. Comparison of the quantized VGG10 1D-CNN model versus the non-quantized.

D. Gdez, P. Soto, S. Latré, N. Gaviria and M. Camelo,
"A Methodology to Design Quantized Deep Neural

Networks for Automatic Modulation Recognition," @ IE E E
\ 19 Algorithms, vol. 15, p. 441, 2022. ’

The professional home for the engineering and technology community worldwide

	Slide 1: Resource and Performance Improvements of Optimized Convolutional Neural Networks for FPGA Implementations of Automatic Modulation Recognition
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Other Work
	Slide 7: Prior Work
	Slide 8: Motivation
	Slide 9: Proposed Work
	Slide 10: Methodology
	Slide 11: Methodology
	Slide 12: Results
	Slide 13: Results
	Slide 14: Results
	Slide 15: Results
	Slide 16: Conclusion
	Slide 17: Backup Slides
	Slide 18: Other Work
	Slide 19: Other Work

