
Resource and Performance Improvements of

Optimized Convolutional Neural Networks for FPGA

Implementations of Automatic Modulation

Recognition

Joshua A Rothe

Whiting School of Engineering

Johns Hopkins University

Baltimore, MD, United States

jrothe1@alumni.jh.edu

Haya Shajaiah

Whiting School of Engineering

Johns Hopkins University

Baltimore, MD, United States

hshajai1@jhu.edu

Abstract—Automatic Modulation Recognition (AMR),

commonly found in software defined radios, relies on speed and

accuracy to effectively interpret the modulation type of incoming

signals. Convolutional Neural Networks (CNNs) are growing in

popularity over traditional algorithms due to their excellent

performance with classification-type problems – but these are

typically resource intensive, and Radio Frequency (RF) receivers

are typically part of a larger system that can benefit from less

resources being tied to this classification task. Field

Programmable Gate Array (FPGA) implementations provide

better performance than CPU and GPU implementations in most

cases, and the added benefit of these functions being off the

processor allows the entire system to perform better. Since

resource utilization is such a critical component of effective CNN

implementation, and it is often inversely tied to performance, the

effectiveness of various hardware optimization techniques as well

as their effects on performance should be considered by the

designer. This work evaluates the tradeoffs of various model

optimizations and how they affect both implementation and

performance, synthesizing the models using Xilinx’s quantization-

aware FINN library. In this work, a methodology is presented for

the generation of I and Q signals for CNN model training and

evaluation, and the performance and hardware utilization

benchmarks are evaluated to determine both design

considerations and effective approaches for optimizing these

models for real-world implementation.

Keywords—Field Programmable Gate Array (FPGA),

Convolutional Neural Network (CNN), Quantization, Structured

Pruning, Automatic Modulation Detection/Recognition

(AMD/AMR), Rectified Linear Unit (ReLU)

I. INTRODUCTION

FPGA implementations of convolutional neural networks
have been shown to be much faster and consume less power than
CPU or GPU implementations. For applications such as
automatic modulation detection, both speed and power usage are
crucial to the performance of the system. A radio receiver must
quickly decode an incoming signal, and it must do so reliably in
remote areas where a small battery might be the primary power
source. Since FPGA fabric is limited, hardware utilization is an
important consideration for these functions, so a high-
performing and resource-optimized CNN is an excellent choice
for classification tasks such as AMR.

The work done in [1] used low-precision math and
quantization, combined with a residual unit-based scheme and
iterative pruning, to cut hardware utilization by 40%. It also
achieved 527k classifications per second with a 7.5 μs latency.
Pruning and quantization were also combined in [2], greatly
shrinking the model size with no loss of accuracy. The smaller
model size allowed Han et. al. to move the model from off-chip
DRAM to on-chip SRAM cache memory, improving processing
speed by 3-4x per layer. ReLU and Max Pooling layers were
combined in [3] to reduce parameter size and give accurate
results despite smaller model sizes, noting that a larger model
does not always improve performance. In [4], C. Zhang et. al.
found that, in FPGA implementations of CNNs, there could be
as much as a 90% performance difference between two models
of similar resource utilization; thus, the optimal implementation
was non-trivial and not a direct function of model depth. And
lastly, in [5], D. Góez et. al. explores the implementation of deep
neural networks for automatic modulation recognition on
FPGAs, using a one-dimensional CNN and quantizing the
weights using the Brevitas library. The paper states that they
would like to evaluate their methods in future work by
incorporating both pruning and different model architectures.
This research addresses both, continuing the work done in [6]
and evaluates the tradeoffs of different optimization techniques
for 1D CNN implementations on FPGAs.

This research uses the FINN library for synthesis onto FPGA
fabric. The FINN library is an open-source tool developed by
Xilinx for use with their FPGA hardware, and in [7] they
demonstrated that the tool achieved the fastest classifications to
date for CNNs implemented using its tool. The tool utilized
time-multiplexing or folding, in which hardware was reused for
various layers by storing the weights in memory and loading
these weights depending on what layer the data was currently
passing through. This approach allowed the designer to set a
target throughput benchmark, and then the synthesizer would
unfold the architecture as necessary (if hardware allowed) to
reach this throughput value. In [8], the tool was improved,
allowing the library to now take advantage of quantization more
heavily for optimization. Float values were acknowledged as too
large, often carrying redundant data. By supporting arbitrary
precision on weights as well as input and output activation, it

allowed designers to use quantization to optimize their models
with significant improvements on FPGAs.

In the previous work [6], CNN models were generated using
various architecture sizes, trained, and performance was
evaluated on GPU using Pytorch. Here, the CNN architectures
were modified to allow for a linear reduction in layer counts and
pruning rates for a more consistent analysis, and weights were
initialized from a consistent seed value to make performance and
training more consistent across the different models. Separate
signal datapoints were generated and used to evaluate the model,
while adjusting the training parameters until model accuracy
reaches at least 99%. Finally, FPGA performance and resource
utilization was measured by synthesizing the model using the
Xilinx FINN library. This data was then used to evaluate how
quantization, pruning, and model depth affected CNN
performance and resource utilization on FPGAs.

II. METHODOLOGY

A. Dataset Generation

Dataset generation was achieved in the same manner as in
[6], by creating a siggen function that created labeled ‘chunks’
of I and Q pairs, with noise values added to simulate real-world
conditions. Datatypes 𝐷𝑚 were generated – amplitude shift
keying modulation types (4ASK, 8ASK), phase shift keying
(BPSK, QPSK, 8PSK, 16PSK), and quadrature amplitude
modulation (8QAM, 16QAM, and 32QAM). The noise value
(0.01, a dimensionless ratio) was chosen for both Additive
White Gaussian Noise (AWGN) 𝑁𝑎 and phase noise 𝑁𝑝. This

noise value allowed for visible distortion on the modulation
types while still allowing the modulation type to be discernable
from the plots. An example of one such plot is shown in Fig. 1,
for the 16QAM modulation type.

Figure 1. Generated I and Q Values for 16QAM.

This signal generator function was used to create a set of 𝑉𝑑
quantity I and Q pairs, grouped into size 𝑐𝑠 chunks. The data

values were organized this way since the model would need to
see a certain number of random datapoints to determine
modulation type, as one normalized value by itself could be one
of several modulation types. The output of this signal generator
was a data frame 𝐷𝑓 consisting of labeled data values of type

𝐷𝑚, each data values containing 𝑐𝑠 I and Q pairs that represent
a sampled and pre-processed signal. Algorithm 1 outlines the
signal generation process executed after each set of I and Q
values is generated, taken from the previous work in [6].

In Algorithm 1, each modulation type 𝐷𝑚 had its own
function used for generating its respective values. Once the data
values are combined into chunks of size 𝑐𝑠, the individual labels
for each datapoint are removed and only one label for the entire
chunk is appended. Once the data is generated, it is then shuffled
(while keeping the datapoints within the same chunk) so that the
model would not learn from the pattern that the signal generation
algorithm creates. Fig. 2 provides a visual representation of this
process.

Figure 2. Data Generation Visualization.

Algorithm I: CNN Dataset Generation

Inputs: Noise values 𝑁𝑎, 𝑁𝑝, chunk size 𝑐𝑠, quantity 𝑉𝑑.

Output: A data frame 𝐷𝑓 consisting of 𝑉𝑑/𝑐𝑠 labeled,

 chunked datasets.

1. Initialize qty 𝐷𝑚 list of siggen functions.

2. i = 0.

3. while i ≤ 𝐷𝑚 do:

4. Generate 𝑉𝑑 quantity I, Q pairs and shuffle.

5. Create an empty list 𝐿𝑐.

6. n = 0.

7. for j ← j + 𝑐𝑠 do:

8. Append qty 𝑐𝑠 I and Q pairs to entry n in 𝐿𝑐.

9. Label entry n with associated label 𝐷𝑚.

10. n = n + 1.

11. end for

12. i = i + 1.

13. end for

14. Combine 𝐿𝑐𝑖
 for i = 1 thru 𝐷𝑚.

15. Convert 𝐿𝑐𝑖
 into dataframe 𝐷𝑓.

16. Return 𝐷𝑓.

The process illustrated in Fig. 2 depicts the methodology for
both the training and evaluation datasets. A separate dataset was
generated for evaluation to ensure the model was not simply
memorizing the training data, and to avoid overfitting.

B. Model Creation

Next, the labels were encoded, and these chunks were added
into a data loader that could then load the data into a Pytorch
model. The models created for this work were named
“VGGlike” due to their architecture resembling the model
presented by Simonyan et. al. in [9]. The first part of the model
(convolutional etc.) dealt with feature extraction, and the second
part (the fully connected layers) dealt with feature classification.
The model architecture was made more linear than in [6] for
easy comparison between model sizes. The architecture was as
follows:

• A convolutional layer, to extract features from the
input data, producing an activation map with
various weighted values which are adjusted during
training based on calculated performance.

• A Rectified Linear Unit (ReLU) layer, used to
introduce non-linearity and avoid the vanishing
gradient problem (where gradients become very
small on deeper layers, making it difficult for their
weights to change during training).

• A Max Pooling layer to reduce the special size of
the output of the layer, capturing the most notable
features and adding robustness with respect to noise
by reducing the influence of unimportant variations
in input data.

• After a final convolutional layer, several fully
connected layers (equal to convolutional layer
count) exist to classify the input based on the
extracted features.

 For each of the models, the Brevitas library was used to
quantize the layers as well as the inputs and outputs at various
bit counts. Pruning was applied after the model was generated,
with the weights being pruned at 10%, 20%, and 30%. Unpruned
models were also produced for comparison.

Since the FINN library in its current iteration requires
exporting the models in QONNX format, even the non-
quantized models were quantized (at 32 bits) and used only in
training benchmarks. This differs from the process used in [6],
where non-quantized Pytorch layers were used for non-
quantized models where possible. The QONNX format is a
dialect of standard ONNX and was developed to be more
friendly with both Brevitas and the FINN library, as discussed
in [10]. Since the FINN library officially supports the QONNX
format for quantization at 8 bits and lower, this was the common
framework used for all models during synthesis.

C. Model Training

Training the model involved defining a Cross Entropy Loss
function to evaluate the training process, and an Adam optimizer
for optimizing the model as it learned. The cross-entropy loss
was pulled from the Pytorch library, and is defined as:

𝐿 = − ∑ 𝑦𝑐 log(𝑝𝑐)𝐶
𝑐=1 (1)

In equation 1, 𝑦 represents the binary indication (1 or 0, true
or false) if the class label 𝑐 is the correct classification. The letter
𝑝 represents the predicted probability of the class label 𝑐 for the
current observation. Values for learning rate and weight decay
(for L2 regularization, to prevent overfitting) were tweaked to
try and allow the model to converge on an acceptable loss value,
which was also tweaked as needed between 0.003 for larger
models up to .025 for smaller, heavily pruned models. The
training stopped once this loss value was reached, and the
model’s performance was evaluated. This was repeated as
necessary for each model with varying layers, quantization
factors, and pruning rates. For models where pruning was
applied, the model implemented structured pruning on the
convolutional and fully connected layers, and then was retrained
after pruning to optimize for the lower quantity of weights that
were now being utilized on the model.

D. Model Evaluation

Evaluation was done by generating a new dataset using the
same methods as training dataset generation, and then evaluating
correct versus incorrect predictions. Models with less than 99%
accuracy had their learning parameters tweaked until the desired
accuracy could be achieved. The model sizes were selectively
shrunk until they were too small to attain good accuracy values.
The model sizes that failed to meet the desired accuracy levels
for all combinations of quantization and pruning rates were
removed, and that is how the bottom floor for model size was
chosen for this work.

Model size was defined by layer count (fully connected,
convolutional, ReLU, and max pooling) and noted in the model
names (for example, VGGLike_5f_5c_4re_4mp). The upper
bound of the model’s accuracy value is obvious, and can be
verified using the normal approximation method (discussed in
[11]) to be 100%. Several models achieved 100% accuracy
when tested against the evaluation dataset, at 16,384 samples.

The lower bound of the model’s accuracy (and therefore,
worst possible performance) is more relevant for performance
metrics, and the Clopper-Pearson method is used for its
calculation. This method accounts for the discrete nature of the
sample size and gives a conservative value that is safe for
estimated worst-case accuracy [12]. The value for 𝐴𝑎is the value
of the accuracy of the worst-scoring model, at approximately
99.57%.

𝐵𝑙 =
1

1+
𝑛−𝐴𝑎+1

𝐴𝑎
𝑓∝

2
,2(𝑛−𝐴𝑎+1),2𝐴𝑎

 (2)

In equation 2, the significance level ∝ is 0.05, a commonly
used standard value in statistical analysis, as shown in [11]. The
sample size, 𝑛, is 16,384 (the number of batches the evaluation
dataset is tested against). The overall lower bound thus works

out to be approximately 99.45%. With a median value of
99.73%, this calculated accuracy denotes a very reliable system;
since real-world accuracy values of 97.1% [13] for modulation
classification are considered high, this research accepts this
methodology and dataset size as sufficient.

E. Synthesis

The models were exported in QONNX format, and then
loaded into the FINN library using a docker script provided by
the forked repository. A Jupyter notebook was used to load,
process, and synthesize each model, where benchmarks were
generated post-synthesis by Xilinx Vivado and evaluated. These
benchmarks were then used for utilization and performance
analysis.

III. EXPERIMENTS AND RESULTS

Performance on GPU using CUDA, prior to synthesis,
showed no improvements aside from reduction in models size,
which was to be expected as the model generation and processes
were optimized for hardware (now using Brevitas’ layers instead
of Pytorch). One notable benchmark was training speed; smaller
models were notably harder to train down to an acceptable loss
threshold, with quantization typically increasing this difficulty
further across the smaller models.

Figure 4. Pre-Pruning Epoch Counts During Training.

Figure 5. Post-Pruning Epoch Counts During Training.

Fig. 4 shows the number of epochs needed to converge on a
proper model size, with quantization and model size both
affecting how quickly the models converged below the loss
threshold. In Fig 5., the epoch count for post-pruning training is
shown. Quantization once again has a significant effect once 4
bits is reached, and the level of pruning also increases the
training length linearly regardless of quantization. This
demonstrates the difficulty of training more optimized models,
though all were able to reach an acceptable accuracy level with
the correct parameters applied.

When imported using the FINN library, the goal of the
synthesizer is to meet timing and throughput, and then optimize
for hardware utilization. If hardware is limited, the synthesizer
will implement time-multiplexing (as discussed previously); but
if performance requirements are too strict, the design may fail to
meet them.

Even though the synthesizer optimizes for utilization at set
clock speed, performance improvements can still be seen on
hardware. One such example is the number of clock cycles
needed to perform the classification, which would reduce from
131 cycles for 8-bit quantization, down to 127 cycles for 6-bit
quantization, and then 123 cycles for 4-bit quantization.
Notably, model architecture size had no effect on cycle count,
nor did pruning.

Figure 6. Estimated Throughput Across All Models, Adjusted Y-Axis.

While pruning is not shown to affect cycle count
performance, there is another metric where some differences can
be seen, such as in Fig. 6 above. How well pre- and post-training
goes during pruning can be inconsistent depending on how the
weights settle as the model iterates over its training set. In Fig.
6 above, the Y-axis is adjusted to show the differences in
quantization and pruning. For the largest model in particular,
aggressive pruning (30%) met with notable gains in throughput.
The benefits of pruning on the smaller models with more
aggressive quantization were variable, and the synthesizer may
have taken potential performance gains away to conserve
resources during utilization. Thus, utilization becomes an
important benchmark to examine for the various model
implementations.

In Fig. 7 and 8, hardware utilization is shown for the smallest
model only (since all model sizes were the same for these
metrics). The synthesizer appears to be unable to recognize the
effects of pruning on memory utilization until quantization is
down to the 4-bit level, in which it drops linearly. This is not
surprising, as FINN’s current iteration optimizes for
quantization gains. Notably, the synthesizer moved its memory
utilization onto the on-chip LUTs instead of the off-chip BRAM
when it was able to do so. These would give considerable gains
in power use and are therefore an important consideration for the
designer.

Figure 7. BRAM Utilization for VGGlike_3f_3c_2re_2mp.

Figure 8. LUT-RAM Utilization for VGGlike_3f_3c_2re_2mp.

 In an attempt to force the synthesizer to realize gains from
model architecture size, the throughput and clock speed values
were raised from the defaults. Maximum clock speed for the
design (on FINN’s default PYNQ device [14]) was around 120
MHz, and when throughput was raised, a target of 3 million FPS
(up from 1 million) was achievable.

 Due to hardware constraints, however, these gains were not
particularly noteworthy. Memory components were noted to
adjust slightly; for example, the VGGlike_6f_6c_5re_5mp
model with no pruning and 8-bit quantization used 9,226 LUT
blocks and 23,611 Flipflops, whereas the
VGGlike_4f_4c_3re_3mp used 9,088 LUTs and 23,510 FFs.
For these same models at 20% pruning and 6-bit quantization,
the former utilized 6,728 LUTs and 17,301 FFs, whereas the
latter utilized 6,572 LUTs and 17,207 FFs. The smallest model
in all cases used slightly more FFs and LUTs than the largest
model size but saw gains in throughput (overshooting the 3
million FPS and reaching around 3.06 million, whereas the
largest model achieved 2.92 million at 20% pruning and 6-bit
quantization).

Another comparison, 20% pruning and 8-bit quantization,
provided a more consistent example of how utilization and
performance trade off. This one was chosen because we do not
see as much variation in this entry in Fig. 7, suggesting no quirks
in training that may make any of these significant outliers.

TABLE I. 8-BIT QUANTIZATION, 20% PRUNING UTILIZATION

Model
Metrics

LUTs FFs BRAM Carry Throughput

VGGlike_6 9,212 23,582 32 1,168 2887202.762

VGGlike_5 9,267 23,728 32 1,165 3089509.262

VGGlike_4 9,058 23,469 32 1,161 3071404.000

VGGlike_3 9,131 23,578 29 1,171 3023267.063

For the smallest model architecture, the gains here seem to be
primarily in BRAM utilization. Flipflop utilization trended
downwards, but would sometimes trend upwards if throughput
also trended upwards (likely another quirk of training for that
model). Overall, model architecture gains on this smaller board
were minimal due to the inability of the synthesizer to unfold the
larger, deeper models.

IV. CONCLUSION AND FUTURE WORK

For efficient FPGA implementations of CNNs that perform
classification tasks such as Automatic Modulation Recognition
(AMR), utilization must be carefully balanced against
performance and accuracy. For the Xilinx FINN library, gains
can primarily be seen by aggressively quantizing a model, as the
library has been designed to take advantage of the potential
improvements that come from smaller weight and input storage
sizes. For the hardware designer using Xilinx FPGAs,
quantization is the primary way to gain improvements with both
power and resource utilization. For classification tasks with
simpler features, a deep CNN such as the larger ones tested here
(6 convolutional layers, 6 fully connected layers) is likely
overkill, but it does not significantly affect utilization due to the
FINN library’s ability to employ time multiplexing. Gains of
roughly 10% on BRAM utilization were seen moving to the
smallest model architecture, and less than that for other
benchmarks. The notable improvements came from the
application of aggressive quantization (4-bit), with a drop of
roughly 33% in, for example, FF utilization between 8-bit and
6-bit quantization, and another 20% between 6-bit and 4-bit
quantization. As another bonus, 4-bit quantization allowed
BRAM to be eschewed completely, with the storage of weighs
and biases moving to the LUT-RAM on the chip – which would
improve power utilization significantly, something a designer of
RF receivers can make good use of.

There were several considerations that came up during this
work that are promising research directions in the future.
Support for larger FPGAs such as Zynq (via
MakeZYNQProject) and the larger Alveo architectures (via
Vitislink) exists, and wrangling these CNN implementations
onto a larger FPGA would allow a designer to unfold the
architectures and explore the benefits of deeper CNN models.
As the FINN model continues to improve and develop, pruning
(structured or otherwise) will also likely become better
supported, leading to further optimizations when applied.
Additionally, implementing these models onto an FPGA along
with antennas, filtering, and the processing required to separate

out the I and Q values could produce a real-world example of an
end-to-end implementation of the models’ AMR functionality.
As the FINN library continues to be improved, benchmarks and
design considerations will need to continuously be evaluated to
make the most out of these fast-evolving technologies.

V. REFERENCES

[1] S. Kumar, R. Mahapatra and S. Anurag, "Automatic Modulation

Recognition: An FPGA Implementation," IEEE Communications
Letters, vol. 26, no. 9, pp. 2062-2066, 2022.

[2] S. Han, H. Mao and W. J. Dally, "Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman
Coding," in ICLR 2016, 2016.

[3] P. M. Gysel, Ristretto: Hardware-Oriented Approximation of

Convolutional Neural Networks, University of California Davis, 2016.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, "Optimizing

FPGA-based Accelerator Design for Deep Convolutional Neural

Networks," in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2015.

[5] D. Góez, P. Soto, S. Latré, N. Gaviria and M. Camelo, "A Methodology

to Design Quantized Deep Neural Networks for Automatic Modulation
Recognition," Algorithms, vol. 15, p. 441, 2022.

[6] J. A. Rothe, Quantization and Pruning of Convolutional Neural

Networks for Efficient FPGA Implementation of Digital Modulation
Detection Firmware, Johns Hopkins University, 2024.

[7] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre

and K. Vissers, "FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference," in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2017.

[8] M. Blott, T. B. Preusser, N. J. Fraser, G. Gambardella, K. O'brien, Y.

Umuroglu, M. Leeser and K. Vissers, "FINN-R: An end-to-end deep-

learning framework for fast exploration of quantized neural networks,"

ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 11, no. 3, pp. 1-23, 2018.

[9] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks

for Large-Scale Image Recognition," 3rd International Conference on
Learning Representations, 2015.

[10] A. Pappalardo, Y. Umuroglu, M. Blott, J. Mitrevski, B. Hawks, N. Tran,

V. Loncar, S. Summers, H. Borras, J. Muhizi, M. Trahms, S.-C. Hsu, S.
Hauck and J. Duarte, "QONNX: Representing Arbitrary-Precision

Quantized Neural Networks," in 4th Workshop on Accelerated Machine

Learning (AccML), 2022.

[11] D. Altman and J. Bland, "Statistics notes: Standard deviations and

standard errors," BMJ (Clinical research ed.), vol. 331, no. 7521, p. 903,
2005.

[12] L. Orawo, "Confidence Intervals for the Binomial Proportion: A

Comparison of Four Methods," Open Journal of Statistics, vol. 11, pp.
806-816, 01 2021.

[13] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. Sebdani and Y.-

D. Yao, "Modulation Classification Based on Signal Constellation
Diagrams and Deep Learning," IEEE Transactions on Neural Networks

and Learning Systems, vol. PP, pp. 1-10, 07 2018.

[14] Diligent, "PYNQ-Z1 Board Reference Manual," 2017. [Online].
Available:

https://digilent.com/reference/_media/reference/programmable-

logic/pynq-z1/pynq-rm.pdf.

