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Abstract—Automatic Modulation Recognition (AMR), 

commonly found in software defined radios, relies on speed and 

accuracy to effectively interpret the modulation type of incoming 

signals. Convolutional Neural Networks (CNNs) are growing in 

popularity over traditional algorithms due to their excellent 

performance with classification-type problems – but these are 

typically resource intensive, and Radio Frequency (RF) receivers 

are typically part of a larger system that can benefit from less 

resources being tied to this classification task. Field 

Programmable Gate Array (FPGA) implementations provide 

better performance than CPU and GPU implementations in most 

cases, and the added benefit of these functions being off the 

processor allows the entire system to perform better. Since 

resource utilization is such a critical component of effective CNN 

implementation, and it is often inversely tied to performance, the 

effectiveness of various hardware optimization techniques as well 

as their effects on performance should be considered by the 

designer. This work evaluates the tradeoffs of various model 

optimizations and how they affect both implementation and 

performance, synthesizing the models using Xilinx’s quantization-

aware FINN library. In this work, a methodology is presented for 

the generation of I and Q signals for CNN model training and 

evaluation, and the performance and hardware utilization 

benchmarks are evaluated to determine both design 

considerations and effective approaches for optimizing these 

models for real-world implementation.  
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I. INTRODUCTION 

FPGA implementations of convolutional neural networks 
have been shown to be much faster and consume less power than 
CPU or GPU implementations. For applications such as 
automatic modulation detection, both speed and power usage are 
crucial to the performance of the system. A radio receiver must 
quickly decode an incoming signal, and it must do so reliably in 
remote areas where a small battery might be the primary power 
source. Since FPGA fabric is limited, hardware utilization is an 
important consideration for these functions, so a high-
performing and resource-optimized CNN is an excellent choice 
for classification tasks such as AMR. 

The work done in [1] used low-precision math and 
quantization, combined with a residual unit-based scheme and 
iterative pruning, to cut hardware utilization by 40%. It also 
achieved 527k classifications per second with a 7.5 μs latency. 
Pruning and quantization were also combined in [2], greatly 
shrinking the model size with no loss of accuracy. The smaller 
model size allowed Han et. al. to move the model from off-chip 
DRAM to on-chip SRAM cache memory, improving processing 
speed by 3-4x per layer. ReLU and Max Pooling layers were 
combined in [3] to reduce parameter size and give accurate 
results despite smaller model sizes, noting that a larger model 
does not always improve performance. In [4], C. Zhang et. al. 
found that, in FPGA implementations of CNNs, there could be 
as much as a 90% performance difference between two models 
of similar resource utilization; thus, the optimal implementation 
was non-trivial and not a direct function of model depth. And 
lastly, in [5], D. Góez et. al. explores the implementation of deep 
neural networks for automatic modulation recognition on 
FPGAs, using a one-dimensional CNN and quantizing the 
weights using the Brevitas library. The paper states that they 
would like to evaluate their methods in future work by 
incorporating both pruning and different model architectures. 
This research addresses both, continuing the work done in [6] 
and evaluates the tradeoffs of different optimization techniques 
for 1D CNN implementations on FPGAs. 

This research uses the FINN library for synthesis onto FPGA 
fabric. The FINN library is an open-source tool developed by 
Xilinx for use with their FPGA hardware, and in [7] they 
demonstrated that the tool achieved the fastest classifications to 
date for CNNs implemented using its tool. The tool utilized 
time-multiplexing or folding, in which hardware was reused for 
various layers by storing the weights in memory and loading 
these weights depending on what layer the data was currently 
passing through. This approach allowed the designer to set a 
target throughput benchmark, and then the synthesizer would 
unfold the architecture as necessary (if hardware allowed) to 
reach this throughput value. In [8], the tool was improved, 
allowing the library to now take advantage of quantization more 
heavily for optimization. Float values were acknowledged as too 
large, often carrying redundant data. By supporting arbitrary 
precision on weights as well as input and output activation, it 



allowed designers to use quantization to optimize their models 
with significant improvements on FPGAs. 

In the previous work [6], CNN models were generated using 
various architecture sizes, trained, and performance was 
evaluated on GPU using Pytorch. Here, the CNN architectures 
were modified to allow for a linear reduction in layer counts and 
pruning rates for a more consistent analysis, and weights were 
initialized from a consistent seed value to make performance and 
training more consistent across the different models. Separate 
signal datapoints were generated and used to evaluate the model, 
while adjusting the training parameters until model accuracy 
reaches at least 99%. Finally, FPGA performance and resource 
utilization was measured by synthesizing the model using the 
Xilinx FINN library. This data was then used to evaluate how 
quantization, pruning, and model depth affected CNN 
performance and resource utilization on FPGAs. 

II. METHODOLOGY 

A. Dataset Generation 

Dataset generation was achieved in the same manner as in 
[6], by creating a siggen function that created labeled ‘chunks’ 
of I and Q pairs, with noise values added to simulate real-world 
conditions. Datatypes 𝐷𝑚 were generated – amplitude shift 
keying modulation types (4ASK, 8ASK), phase shift keying 
(BPSK, QPSK, 8PSK, 16PSK), and quadrature amplitude 
modulation (8QAM, 16QAM, and 32QAM). The noise value 
(0.01, a dimensionless ratio) was chosen for both Additive 
White Gaussian Noise (AWGN) 𝑁𝑎 and phase noise 𝑁𝑝. This 

noise value allowed for visible distortion on the modulation 
types while still allowing the modulation type to be discernable 
from the plots. An example of one such plot is shown in Fig. 1, 
for the 16QAM modulation type.  

 

Figure 1. Generated I and Q Values for 16QAM. 

This signal generator function was used to create a set of 𝑉𝑑 
quantity I and Q pairs, grouped into size 𝑐𝑠  chunks. The data 

values were organized this way since the model would need to 
see a certain number of random datapoints to determine 
modulation type, as one normalized value by itself could be one 
of several modulation types. The output of this signal generator 
was a data frame 𝐷𝑓 consisting of labeled data values of type 

𝐷𝑚, each data values containing 𝑐𝑠 I and Q pairs that represent 
a sampled and pre-processed signal. Algorithm 1 outlines the 
signal generation process executed after each set of I and Q 
values is generated, taken from the previous work in [6]. 

 

In Algorithm 1, each modulation type 𝐷𝑚  had its own 
function used for generating its respective values. Once the data 
values are combined into chunks of size 𝑐𝑠, the individual labels 
for each datapoint are removed and only one label for the entire 
chunk is appended. Once the data is generated, it is then shuffled 
(while keeping the datapoints within the same chunk) so that the 
model would not learn from the pattern that the signal generation 
algorithm creates. Fig. 2 provides a visual representation of this 
process. 

 

 

Figure 2. Data Generation Visualization. 

Algorithm I: CNN Dataset Generation 

Inputs: Noise values 𝑁𝑎, 𝑁𝑝, chunk size 𝑐𝑠, quantity 𝑉𝑑. 

Output: A data frame 𝐷𝑓 consisting of 𝑉𝑑/𝑐𝑠 labeled,  

               chunked datasets. 

1.  Initialize qty 𝐷𝑚 list of siggen functions. 

2.  i = 0. 

3.  while i ≤ 𝐷𝑚 do: 

4.      Generate 𝑉𝑑 quantity I, Q pairs and shuffle. 

5.      Create an empty list 𝐿𝑐. 

6.      n = 0.     

7.      for j ← j + 𝑐𝑠 do: 

8.          Append qty 𝑐𝑠 I and Q pairs to entry n in 𝐿𝑐. 

9.          Label entry n with associated label 𝐷𝑚. 

10.        n = n + 1. 

11.    end for 

12.    i = i + 1. 

13. end for 

14. Combine 𝐿𝑐𝑖
 for i = 1 thru 𝐷𝑚. 

15. Convert 𝐿𝑐𝑖
 into dataframe 𝐷𝑓. 

16. Return 𝐷𝑓. 



The process illustrated in Fig. 2 depicts the methodology for 
both the training and evaluation datasets. A separate dataset was 
generated for evaluation to ensure the model was not simply 
memorizing the training data, and to avoid overfitting. 

B. Model Creation 

Next, the labels were encoded, and these chunks were added 
into a data loader that could then load the data into a Pytorch 
model. The models created for this work were named 
“VGGlike” due to their architecture resembling the model 
presented by Simonyan et. al. in [9]. The first part of the model 
(convolutional etc.) dealt with feature extraction, and the second 
part (the fully connected layers) dealt with feature classification. 
The model architecture was made more linear than in [6] for 
easy comparison between model sizes. The architecture was as 
follows: 

• A convolutional layer, to extract features from the 
input data, producing an activation map with 
various weighted values which are adjusted during 
training based on calculated performance. 

• A Rectified Linear Unit (ReLU) layer, used to 
introduce non-linearity and avoid the vanishing 
gradient problem (where gradients become very 
small on deeper layers, making it difficult for their 
weights to change during training). 

• A Max Pooling layer to reduce the special size of 
the output of the layer, capturing the most notable 
features and adding robustness with respect to noise 
by reducing the influence of unimportant variations 
in input data. 

• After a final convolutional layer, several fully 
connected layers (equal to convolutional layer 
count) exist to classify the input based on the 
extracted features. 

 For each of the models, the Brevitas library was used to 
quantize the layers as well as the inputs and outputs at various 
bit counts. Pruning was applied after the model was generated, 
with the weights being pruned at 10%, 20%, and 30%. Unpruned 
models were also produced for comparison. 

Since the FINN library in its current iteration requires 
exporting the models in QONNX format, even the non-
quantized models were quantized (at 32 bits) and used only in 
training benchmarks. This differs from the process used in [6], 
where non-quantized Pytorch layers were used for non-
quantized models where possible. The QONNX format is a 
dialect of standard ONNX and was developed to be more 
friendly with both Brevitas and the FINN library, as discussed 
in [10]. Since the FINN library officially supports the QONNX 
format for quantization at 8 bits and lower, this was the common 
framework used for all models during synthesis. 

C. Model Training 

Training the model involved defining a Cross Entropy Loss 
function to evaluate the training process, and an Adam optimizer 
for optimizing the model as it learned. The cross-entropy loss 
was pulled from the Pytorch library, and is defined as: 

 

𝐿 =  − ∑ 𝑦𝑐 log(𝑝𝑐)𝐶
𝑐=1                      (1) 

In equation 1, 𝑦 represents the binary indication (1 or 0, true 
or false) if the class label 𝑐 is the correct classification. The letter 
𝑝 represents the predicted probability of the class label 𝑐 for the 
current observation. Values for learning rate and weight decay 
(for L2 regularization, to prevent overfitting) were tweaked to 
try and allow the model to converge on an acceptable loss value, 
which was also tweaked as needed between 0.003 for larger 
models up to .025 for smaller, heavily pruned models. The 
training stopped once this loss value was reached, and the 
model’s performance was evaluated. This was repeated as 
necessary for each model with varying layers, quantization 
factors, and pruning rates. For models where pruning was 
applied, the model implemented structured pruning on the 
convolutional and fully connected layers, and then was retrained 
after pruning to optimize for the lower quantity of weights that 
were now being utilized on the model. 

D. Model Evaluation 

Evaluation was done by generating a new dataset using the 
same methods as training dataset generation, and then evaluating 
correct versus incorrect predictions. Models with less than 99% 
accuracy had their learning parameters tweaked until the desired 
accuracy could be achieved. The model sizes were selectively 
shrunk until they were too small to attain good accuracy values. 
The model sizes that failed to meet the desired accuracy levels 
for all combinations of quantization and pruning rates were 
removed, and that is how the bottom floor for model size was 
chosen for this work. 

Model size was defined by layer count (fully connected, 
convolutional, ReLU, and max pooling) and noted in the model 
names (for example, VGGLike_5f_5c_4re_4mp). The upper 
bound of the model’s accuracy value is obvious, and can be 
verified using the normal approximation method (discussed in 
[11]) to be 100%. Several models achieved 100% accuracy 
when tested against the evaluation dataset, at 16,384 samples. 

The lower bound of the model’s accuracy (and therefore, 
worst possible performance) is more relevant for performance 
metrics, and the Clopper-Pearson method is used for its 
calculation. This method accounts for the discrete nature of the 
sample size and gives a conservative value that is safe for 
estimated worst-case accuracy [12]. The value for 𝐴𝑎is the value 
of the accuracy of the worst-scoring model, at approximately 
99.57%. 

 

𝐵𝑙 =  
1

1+
𝑛−𝐴𝑎+1

𝐴𝑎
𝑓∝

2
,2(𝑛−𝐴𝑎+1),2𝐴𝑎

                   (2) 

In equation 2, the significance level ∝ is 0.05, a commonly 
used standard value in statistical analysis, as shown in [11]. The 
sample size, 𝑛, is 16,384 (the number of batches the evaluation 
dataset is tested against). The overall lower bound thus works 



out to be approximately 99.45%. With a median value of 
99.73%, this calculated accuracy denotes a very reliable system; 
since real-world accuracy values of 97.1% [13] for modulation 
classification are considered high, this research accepts this 
methodology and dataset size as sufficient. 

E. Synthesis 

The models were exported in QONNX format, and then 
loaded into the FINN library using a docker script provided by 
the forked repository. A Jupyter notebook was used to load, 
process, and synthesize each model, where benchmarks were 
generated post-synthesis by Xilinx Vivado and evaluated. These 
benchmarks were then used for utilization and performance 
analysis. 

III. EXPERIMENTS AND RESULTS 

Performance on GPU using CUDA, prior to synthesis, 
showed no improvements aside from reduction in models size, 
which was to be expected as the model generation and processes 
were optimized for hardware (now using Brevitas’ layers instead 
of Pytorch). One notable benchmark was training speed; smaller 
models were notably harder to train down to an acceptable loss 
threshold, with quantization typically increasing this difficulty 
further across the smaller models. 

 

Figure 4. Pre-Pruning Epoch Counts During Training. 

 

Figure 5. Post-Pruning Epoch Counts During Training. 

Fig. 4 shows the number of epochs needed to converge on a 
proper model size, with quantization and model size both 
affecting how quickly the models converged below the loss 
threshold. In Fig 5., the epoch count for post-pruning training is 
shown. Quantization once again has a significant effect once 4 
bits is reached, and the level of pruning also increases the 
training length linearly regardless of quantization. This 
demonstrates the difficulty of training more optimized models, 
though all were able to reach an acceptable accuracy level with 
the correct parameters applied. 

When imported using the FINN library, the goal of the 
synthesizer is to meet timing and throughput, and then optimize 
for hardware utilization. If hardware is limited, the synthesizer 
will implement time-multiplexing (as discussed previously); but 
if performance requirements are too strict, the design may fail to 
meet them. 

Even though the synthesizer optimizes for utilization at set 
clock speed, performance improvements can still be seen on 
hardware. One such example is the number of clock cycles 
needed to perform the classification, which would reduce from 
131 cycles for 8-bit quantization, down to 127 cycles for 6-bit 
quantization, and then 123 cycles for 4-bit quantization. 
Notably, model architecture size had no effect on cycle count, 
nor did pruning. 



 

Figure 6. Estimated Throughput Across All Models, Adjusted Y-Axis. 

While pruning is not shown to affect cycle count 
performance, there is another metric where some differences can 
be seen, such as in Fig. 6 above. How well pre- and post-training 
goes during pruning can be inconsistent depending on how the 
weights settle as the model iterates over its training set. In Fig. 
6 above, the Y-axis is adjusted to show the differences in 
quantization and pruning. For the largest model in particular, 
aggressive pruning (30%) met with notable gains in throughput. 
The benefits of pruning on the smaller models with more 
aggressive quantization were variable, and the synthesizer may 
have taken potential performance gains away to conserve 
resources during utilization. Thus, utilization becomes an 
important benchmark to examine for the various model 
implementations. 

In Fig. 7 and 8, hardware utilization is shown for the smallest 
model only (since all model sizes were the same for these 
metrics). The synthesizer appears to be unable to recognize the 
effects of pruning on memory utilization until quantization is 
down to the 4-bit level, in which it drops linearly. This is not 
surprising, as FINN’s current iteration optimizes for 
quantization gains. Notably, the synthesizer moved its memory 
utilization onto the on-chip LUTs instead of the off-chip BRAM 
when it was able to do so. These would give considerable gains 
in power use and are therefore an important consideration for the 
designer. 

 

Figure 7. BRAM Utilization for VGGlike_3f_3c_2re_2mp. 

 

Figure 8. LUT-RAM Utilization for VGGlike_3f_3c_2re_2mp. 

 In an attempt to force the synthesizer to realize gains from 
model architecture size, the throughput and clock speed values 
were raised from the defaults. Maximum clock speed for the 
design (on FINN’s default PYNQ device [14]) was around 120 
MHz, and when throughput was raised, a target of 3 million FPS 
(up from 1 million) was achievable. 

 Due to hardware constraints, however, these gains were not 
particularly noteworthy. Memory components were noted to 
adjust slightly; for example, the VGGlike_6f_6c_5re_5mp 
model with no pruning and 8-bit quantization used 9,226 LUT 
blocks and 23,611 Flipflops, whereas the 
VGGlike_4f_4c_3re_3mp used 9,088 LUTs and 23,510 FFs. 
For these same models at 20% pruning and 6-bit quantization, 
the former utilized 6,728 LUTs and 17,301 FFs, whereas the 
latter utilized 6,572 LUTs and 17,207 FFs. The smallest model 
in all cases used slightly more FFs and LUTs than the largest 
model size but saw gains in throughput (overshooting the 3 
million FPS and reaching around 3.06 million, whereas the 
largest model achieved 2.92 million at 20% pruning and 6-bit 
quantization). 

Another comparison, 20% pruning and 8-bit quantization, 
provided a more consistent example of how utilization and 
performance trade off. This one was chosen because we do not 
see as much variation in this entry in Fig. 7, suggesting no quirks 
in training that may make any of these significant outliers. 

 

 



TABLE I.  8-BIT QUANTIZATION, 20% PRUNING UTILIZATION 

Model 
Metrics 

LUTs FFs BRAM Carry Throughput 

VGGlike_6 9,212 23,582 32 1,168 2887202.762 

VGGlike_5 9,267 23,728 32 1,165 3089509.262 

VGGlike_4 9,058 23,469 32 1,161 3071404.000 

VGGlike_3 9,131 23,578 29 1,171 3023267.063 

 

For the smallest model architecture, the gains here seem to be 
primarily in BRAM utilization. Flipflop utilization trended 
downwards, but would sometimes trend upwards if throughput 
also trended upwards (likely another quirk of training for that 
model). Overall, model architecture gains on this smaller board 
were minimal due to the inability of the synthesizer to unfold the 
larger, deeper models. 

IV. CONCLUSION AND FUTURE WORK 

For efficient FPGA implementations of CNNs that perform 
classification tasks such as Automatic Modulation Recognition 
(AMR), utilization must be carefully balanced against 
performance and accuracy. For the Xilinx FINN library, gains 
can primarily be seen by aggressively quantizing a model, as the 
library has been designed to take advantage of the potential 
improvements that come from smaller weight and input storage 
sizes. For the hardware designer using Xilinx FPGAs, 
quantization is the primary way to gain improvements with both 
power and resource utilization. For classification tasks with 
simpler features, a deep CNN such as the larger ones tested here 
(6 convolutional layers, 6 fully connected layers) is likely 
overkill, but it does not significantly affect utilization due to the 
FINN library’s ability to employ time multiplexing. Gains of 
roughly 10% on BRAM utilization were seen moving to the 
smallest model architecture, and less than that for other 
benchmarks. The notable improvements came from the 
application of aggressive quantization (4-bit), with a drop of 
roughly 33% in, for example, FF utilization between 8-bit and 
6-bit quantization, and another 20% between 6-bit and 4-bit 
quantization. As another bonus, 4-bit quantization allowed 
BRAM to be eschewed completely, with the storage of weighs 
and biases moving to the LUT-RAM on the chip – which would 
improve power utilization significantly, something a designer of 
RF receivers can make good use of. 

There were several considerations that came up during this 
work that are promising research directions in the future. 
Support for larger FPGAs such as Zynq (via 
MakeZYNQProject) and the larger Alveo architectures (via 
Vitislink) exists, and wrangling these CNN implementations 
onto a larger FPGA would allow a designer to unfold the 
architectures and explore the benefits of deeper CNN models. 
As the FINN model continues to improve and develop, pruning 
(structured or otherwise) will also likely become better 
supported, leading to further optimizations when applied. 
Additionally, implementing these models onto an FPGA along 
with antennas, filtering, and the processing required to separate 

out the I and Q values could produce a real-world example of an 
end-to-end implementation of the models’ AMR functionality. 
As the FINN library continues to be improved, benchmarks and 
design considerations will need to continuously be evaluated to 
make the most out of these fast-evolving technologies. 
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